求一道高数题 p89.35
4个回答
展开全部
∫ xdx/(1+cos2x)
=(1/2)∫ xdtanx
=(1/2)xtanx -(1/2)∫tanx dx
=(1/2)[xtanx +ln|cosx|] + C
∫(0->π/2) xdx/(1+cos2x)
=(1/2)[xtanx + ln|cosx|]|(0->π/2)
=(1/2)lim(x->π/2-) (xtanx + lncosx)
=(1/2)lim(x->π/2-) [xsinx + cosx.lncosx]/cosx
(0/0 分子分母分别求导)
=(1/2)lim(x->π/2-) [sinx + xcosx - sinx.lncosx -sinx ]/(-sinx)
=(1/2)lim(x->π/2-) [ -xcotx + lncosx ]
=-π/4
=(1/2)∫ xdtanx
=(1/2)xtanx -(1/2)∫tanx dx
=(1/2)[xtanx +ln|cosx|] + C
∫(0->π/2) xdx/(1+cos2x)
=(1/2)[xtanx + ln|cosx|]|(0->π/2)
=(1/2)lim(x->π/2-) (xtanx + lncosx)
=(1/2)lim(x->π/2-) [xsinx + cosx.lncosx]/cosx
(0/0 分子分母分别求导)
=(1/2)lim(x->π/2-) [sinx + xcosx - sinx.lncosx -sinx ]/(-sinx)
=(1/2)lim(x->π/2-) [ -xcotx + lncosx ]
=-π/4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询