函数怎么求导

 我来答
帐号已注销
2019-09-24 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.3万
展开全部

求导的方法 :

(1)求函数y=f(x)在x0处导数的步骤: 

① 求函数的增量Δy=f(x0+Δx)-f(x0) 

② 求平均变化率 

③ 取极限,得导数。 

(2)几种常见函数的导数公式: 

① C'=0(C为常数);

② (x^n)'=nx^(n-1) (n∈Q); 

③ (sinx)'=cosx; 

④ (cosx)'=-sinx; 

⑤ (e^x)'=e^x;

⑥ (a^x)'=a^xIna (ln为自然对数) 

⑦ loga(x)'=(1/x)loga(e) 

(3)导数的四则运算法则: 

①(u±v)'=u'±v'

②(uv)'=u'v+uv' 

③(u/v)'=(u'v-uv')/ v^2 

④[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)]) 

(4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则

扩展资料:

求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

数学中的名词,即对函数进行求导,用  表示。

反函数求导法则:

若函数  严格单调且可导,则其反函数  的导数存在且  。

复合函数求导法则:

若  在点x可导  在相应的点u也可导,则其复合函数  在点x可导且  。

隐函数求导法则:

若  中存在隐函数  ,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即  ,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。

参考资料:百度百科——求导

犹豫的背包
2023-07-21 · TA获得超过116个赞
知道小有建树答主
回答量:2380
采纳率:99%
帮助的人:61万
展开全部

要求函数的导数,可以使用微积分中的导数定义或常用的导数规则来求解。

1. 使用导数定义:

若函数 f(x) 在某点 x 处可导,那么函数在该点的导数 f'(x) 可以通过以下极限公式计算:

f'(x) = lim(h->0) [f(x+h) - f(x)] / h

2. 常用导数规则:

- 常数规则:若 f(x) = c (c 为常数),则 f'(x) = 0

- 幂规则:若 f(x) = x^n (n 是实数),则 f'(x) = n*x^(n-1)

- 恒等律:若 f(x) = x,则 f'(x) = 1

- 常用函数的导数规则,如:f(x) = sin(x),f(x) = cos(x),f(x) = e^x,等等。

以下是一个示例表格,展示常见函数的导数:

请注意,这只是一份示例表格,实际上还有更多的函数和规则。求导可以是一个相对复杂的过程,需要根据具体函数和规则进行分析和应用。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小达人芳芳老师
2023-07-30 · 超过123用户采纳过TA的回答
知道小有建树答主
回答量:657
采纳率:100%
帮助的人:11.8万
展开全部
求函数的导数需要使用微积分中的导数定义及求导法则。以下是一些常用的求导方法:
1. 基础函数的导数:根据基本函数的导数公式,对于常见函数如常数函数、幂函数、指数函数、对数函数等,可以直接应用其导数公式求导。
2. 和、差、积、商的法则:根据求导法则,对于两个函数的和、差、积或商,可以利用求导法则进行求导。例如,对于函数 f(x) = u(x) + v(x),其中 u(x) 和 v(x) 可以是任意函数,可以使用和的法则求导:f'(x) = u'(x) + v'(x)。
3. 链式法则:对于复合函数,使用链式法则求导。链式法则是指,如果 y = f(g(x)),其中 f(x) 和 g(x) 都是可导函数,则 y 对 x 的导数可以表示为 y' = f'(g(x)) * g'(x)。
4. 高级求导法则:对于高级函数,如三角函数、指数函数的复合函数等,可以使用相关的高级求导法则。例如,对于 sin(x) 的导数是 cos(x),对 exp(x) 的导数是 exp(x)。
需要注意的是,求导结果会根据具体函数而有所不同,因此对于不同的函数,需要选择合适的求导方法。对于复杂的函数,还可能需要使用导数表或计算软件进行求导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
柴晨欣台濮
游戏玩家

2019-10-22 · 非著名电竞玩家
知道小有建树答主
回答量:1.1万
采纳率:33%
帮助的人:889万
展开全部
⑴求函数y=f(x)在x0处导数的步骤:

求函数的增量Δy=f(x0+Δx)-f(x0)

求平均变化率

取极限,得导数。
⑵基本初等函数的导数公式:
1
.C'=0(C为常数);
2
.(Xn)'=nX(n-1)
(n∈Q);
3
.(sinX)'=cosX;
4
.(cosX)'=-sinX;
5
.(aX)'=aXIna
(ln为自然对数)
特别地,(ex)'=ex
6
.(logaX)'=(1/X)logae=1/(Xlna)
(a>0,且a≠1)
特别地,(ln
x)'=1/x
7
.(tanX)'=1/(cosX)2=(secX)2
8
.(cotX)'=-1/(sinX)2=-(cscX)2
9
.(secX)'=tanX
secX
10.(cscX)'=-cotX
cscX
⑶导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v2
④复合函数的导数
[u(v)]'=[u'(v)]*v'
(u(v)为复合函数f[g(x)])
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
重要极限

x
趋于0时
sin
x=tan
x=x

x
趋于0时
(1+x)1/x=e
上式等价于

x
趋于
正无穷时,(1+1/x)x=e
注明
不是所有的函数都可以求导!可导的函数一定连续,但连续的函数不一定可导!比如y=|x|在y=0处不可导。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
缕尔多
2023-07-15 · 超过25用户采纳过TA的回答
知道答主
回答量:1095
采纳率:22%
帮助的人:20万
展开全部
要求一个函数的导,你可以使用微积分的基本规则和公式来计是一些常见的求导方法:
导 如果有一个 f(x x任常数,数是x) = nx^(n-)。
2. 指数函数的求导:
对于 f(x) = a^x,其中 a 是意常数且 a>0 且不等于1,那么导数是 f'(x)ln(a))*a^x。
. 对数导:
对于自然对数函数 f(x) = ln是 f'(x 。
4. 角的求导:
对于正弦函数 f(x) = sin那么导数是 f'(x) =)。
对于 f = cos(x),那么导数是'(x) -(x。
于正切函数 f(x) = tan(x),那么导数是 = sec2. 基本的法则:
当两个函数相加或相乘可以使用求导则:
如果 f(x 和 g(x) 是个可导函数那:
- (fgx) = f'(x) + g'(x)(和法则)
- (f*g)'x) = f'(x)*(x) +(x)*g'((积则这只是微积中的一部分,还有更多求导规则公式可供使用。你有特定的函数需要求导提供的具体形式,我帮你计算其导数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式