余弦2倍角公式
2个回答
展开全部
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
<!-->三倍角公式推导</h2> 附推导:<br> tan3α=sin3α/cos3α<br> =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)<br> =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)<br> 上下同除以cos^3(α),得:<br> tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))<br> sin3α=sin(2α+α)=sin2αcosα+cos2αsinα<br> =2sinαcos^2(α)+(1-2sin^2(α))sinα<br> =2sinα-2sin^3(α)+sinα-2sin^2(α)<br> =3sinα-4sin^3(α)<br> cos3α=cos(2α+α)=cos2αcosα-sin2αsinα<br> =(2cos^2(α)-1)cosα-2cosαsin^2(α)<br> =2cos^3(α)-cosα+(2cosα-2cos^3(α))<br> =4cos^3(α)-3cosα<br> 即<br> sin3α=3sinα-4sin^3(α)<br> cos3α=4cos^3(α)-3cosα
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
<!-->三倍角公式推导</h2> 附推导:<br> tan3α=sin3α/cos3α<br> =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)<br> =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)<br> 上下同除以cos^3(α),得:<br> tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))<br> sin3α=sin(2α+α)=sin2αcosα+cos2αsinα<br> =2sinαcos^2(α)+(1-2sin^2(α))sinα<br> =2sinα-2sin^3(α)+sinα-2sin^2(α)<br> =3sinα-4sin^3(α)<br> cos3α=cos(2α+α)=cos2αcosα-sin2αsinα<br> =(2cos^2(α)-1)cosα-2cosαsin^2(α)<br> =2cos^3(α)-cosα+(2cosα-2cos^3(α))<br> =4cos^3(α)-3cosα<br> 即<br> sin3α=3sinα-4sin^3(α)<br> cos3α=4cos^3(α)-3cosα
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询