函数f(x)=-x^2+2ax+1-a在区间「0,1」上有最大值2..求实数a的值
3个回答
展开全部
f(x)
=
-x^2
+
2ax
+
1
-
a
f'(x)
=
-2x
+
2a
=
2(a-x)
若a
<=
0,
在区间「0,1」上,f'(x)
<=
0,f(x)=-x^2+2ax+1-a在区间「0,1」上单调递减,2=f(0)
=
1-a,
a
=
-1.
若a
>=
1,在区间「0,1」上f'(x)>=0,
f(x)=-x^2+2ax+1-a在区间「0,1」上单调递增,2
=
f(1)
=
a,
a
=
2.
若0<a<1,
在区间「0,a」上f'(x)>=0,
f(x)=-x^2+2ax+1-a在区间「0,a」上单调递增.
在区间「a,1」上f'(x)<=0,
f(x)=-x^2+2ax+1-a在区间「a,1」上单调递减.
2
=
f(a)
=
a^2
+
1
-
a,
a^2
-
a
-
1
=
0,
a(a-1)
=
1,
但
0<a<1时,-1<a-1<0,
a(a-1)<0.
矛盾。
综合,有,
a
=
-1,或者,a
=
2.
=
-x^2
+
2ax
+
1
-
a
f'(x)
=
-2x
+
2a
=
2(a-x)
若a
<=
0,
在区间「0,1」上,f'(x)
<=
0,f(x)=-x^2+2ax+1-a在区间「0,1」上单调递减,2=f(0)
=
1-a,
a
=
-1.
若a
>=
1,在区间「0,1」上f'(x)>=0,
f(x)=-x^2+2ax+1-a在区间「0,1」上单调递增,2
=
f(1)
=
a,
a
=
2.
若0<a<1,
在区间「0,a」上f'(x)>=0,
f(x)=-x^2+2ax+1-a在区间「0,a」上单调递增.
在区间「a,1」上f'(x)<=0,
f(x)=-x^2+2ax+1-a在区间「a,1」上单调递减.
2
=
f(a)
=
a^2
+
1
-
a,
a^2
-
a
-
1
=
0,
a(a-1)
=
1,
但
0<a<1时,-1<a-1<0,
a(a-1)<0.
矛盾。
综合,有,
a
=
-1,或者,a
=
2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f'(X)=-2X+2a=-2(X-a)
令f'(X)=0,则可求出当X=a时,有极值
然后比较极值点和端点的函数值
f(0)=1-a=2,则a=-1
f(1)=-1+2a+1-a=a=2,则a=2
f(a)=-a^2+2a^2+1-a=a^2+1-a=a(a-1)+1=2,则a=(根5+1)/2或a=(-根5+1)/2
令f'(X)=0,则可求出当X=a时,有极值
然后比较极值点和端点的函数值
f(0)=1-a=2,则a=-1
f(1)=-1+2a+1-a=a=2,则a=2
f(a)=-a^2+2a^2+1-a=a^2+1-a=a(a-1)+1=2,则a=(根5+1)/2或a=(-根5+1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询