勾股定理!。
展开全部
勾股定理:
勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras
Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
当三角形为钝角时,哪么a的平方+b的平方〈c的平方,即a*a+b*b〈c*c
当三角形为锐角时,哪么a的平方+b的平方〉c的平方,即a*a+b*b〉c*c
勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras
Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
当三角形为钝角时,哪么a的平方+b的平方〈c的平方,即a*a+b*b〈c*c
当三角形为锐角时,哪么a的平方+b的平方〉c的平方,即a*a+b*b〉c*c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询