已知x1,x2(x1>x2)是关于x的方程x2-(2k+1)x+k2+k=0的两...

已知x1,x2(x1>x2)是关于x的方程x2-(2k+1)x+k2+k=0的两根(1)求证:不论k取何实数,方程总有两个不相等的实数根;(2)若3x1+x22=7,求k... 已知x1,x2(x1>x2)是关于x的方程x2-(2k+1)x+k2+k=0的两根 (1)求证:不论k取何实数,方程总有两个不相等的实数根; (2)若3x1+x22=7,求k的值. 展开
 我来答
盈晓禚浦
2020-06-26 · TA获得超过3687个赞
知道大有可为答主
回答量:3117
采纳率:31%
帮助的人:209万
展开全部
解:(1)∵△=(2k+1)2-4(k2+k)=1,即△>0,
∴不论k取何实数,方程总有两个不相等的实数根;
(2)利用求根公式解方程,x=2k+1±12,由于x1>x2,所以x1=k+1,x2=k,
∵3x1+x22=7,
∴3(k+1)+k2=7,即k2+3k-4=0,(k+4)(k-1)=0,k1=-4,k2=1;
所以k的值为-4或1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式