一道有关动量守恒的高中物理题目,答案已知,求解释
两个质量均为m的物块AB通过轻弹簧连在一起静止于光滑水平面上,另一物块C以一定的初速度向右匀速运动,与A发生碰撞并黏在一起,若要使弹簧具有最大弹性势能的时候,ABC以及弹...
两个质量均为m的物块A B通过轻弹簧连在一起静止于光滑水平面上,另一物块C以一定的初速度向右匀速运动,与A发生碰撞并黏在一起,若要使弹簧具有最大弹性势能的时候,A B C以及弹簧组成的系统的动能刚好是势能的2倍,则C的质量应该满足什么条件? 答案是m
展开
展开全部
假设物体A与物体C粘在一起之后的总质量为M,速度为v1,设物体C的质量为mc,则有
M=m+mc
对于A与C粘在一起之后,AC以及B组成的系统(包括弹簧)不受外力的作用,因此动量守恒,机械能守恒,机械能E=M*(v1^2)/2
(v1^2表示v1的平方)
而当AC组成的整体与B的速度达到相同的时候,此时,弹簧刚好不在压缩,因此势能也达到最大值,设此时的ABC的速度为v2,则由动量守恒
有:
M*v1=(M+m)*v2
则v2=M*v1/(M+m)
此时的系统的动能为Ek=(M+m)*(v2^2)/2
(v2^2表示v2的平方)
系统的机械能也即AC碰撞之后瞬间的动能,即E=M*(v1^2)/2
则最大的势能为Ep=E-Ek=M*(v1^2)/2-(M+m)*(v2^2)/2
将v2=M*v1/(M+m)
带入上面的Ep的表达式中化简得到Ep关于v1的表达式,并且由Ek=2*Ep=(M+m)*(v2^2)/2
将Ek也表示成关于v1的表达式,并且利用上式可以化简得到
(这个你可以自己化化看,比较简单,这里就不再罗嗦了)
2×m=M
=mc+m
则mc=m
也即c的质量应为m
M=m+mc
对于A与C粘在一起之后,AC以及B组成的系统(包括弹簧)不受外力的作用,因此动量守恒,机械能守恒,机械能E=M*(v1^2)/2
(v1^2表示v1的平方)
而当AC组成的整体与B的速度达到相同的时候,此时,弹簧刚好不在压缩,因此势能也达到最大值,设此时的ABC的速度为v2,则由动量守恒
有:
M*v1=(M+m)*v2
则v2=M*v1/(M+m)
此时的系统的动能为Ek=(M+m)*(v2^2)/2
(v2^2表示v2的平方)
系统的机械能也即AC碰撞之后瞬间的动能,即E=M*(v1^2)/2
则最大的势能为Ep=E-Ek=M*(v1^2)/2-(M+m)*(v2^2)/2
将v2=M*v1/(M+m)
带入上面的Ep的表达式中化简得到Ep关于v1的表达式,并且由Ek=2*Ep=(M+m)*(v2^2)/2
将Ek也表示成关于v1的表达式,并且利用上式可以化简得到
(这个你可以自己化化看,比较简单,这里就不再罗嗦了)
2×m=M
=mc+m
则mc=m
也即c的质量应为m
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询