请教一道数学题,见问题补充
如图,已知过点A的直线AB;y=-2x+4和直线AC:y=½x-1,过原点O的抛物线的顶点为B(1,2)(1)直线AC与y轴的交点C的坐标为------,∠CA...
如图,已知过点A的直线AB;y=-2x+4和直线AC:y=½x-1,过原点O的抛物线的顶点为B(1,2) (1)直线AC与y轴的交点C的坐标为------,∠CAB=----- (2)求出抛物线的解析式 (3)点P(m,n)是抛物线上OB间的一点 ①作PQ平行于y轴交直线AC于点Q,当线段PQ被x轴平分时,求出点P的坐标 ②作PM⊥AB于M,PN⊥AC于N,四边形PMAN能否为正方形?若能,求出点P的坐标;若不能,请说明理由
展开
1个回答
展开全部
(3)②正确答案应该是存在唯一一个这样的P点。
思路给你点一下(关键是公式不好输入)。
首先(2)求出抛物线的解析式为:y=-2(x-1)^2+2.
因为第(1)问中求出∠CAB=90度,所以AC⊥AB,
又因为PM⊥AB,PN⊥AC,所以四边形PMAN为一个矩形,
若想要PMAN为正方形,只要保证PMAN有2个临边相等就可以了。
下面证明PMAN有2个临边相等。
需要用到点到直线的距离公式(课本上应该有这个公式):
点(x0,y0)到直线Ax+By+C=0的距离公式为:d=(Ax0+By0+C)的绝对值/根号下(A^2+B^2).
不妨我们证明PM=PN,P点已知为(m,n),
代入距离公式最终整理得到:(2m+n-4)的绝对值=(m-2n-2)的绝对值
解绝对值方程得到只有一个点P(1/6,11/18)满足条件,(其余三个点都舍掉了)。
还有一点需要提醒你第(2)中求出的抛物线有2条,还有一条是x=(-1/4)(y-2)^2+1,解法类似。
思路给你点一下(关键是公式不好输入)。
首先(2)求出抛物线的解析式为:y=-2(x-1)^2+2.
因为第(1)问中求出∠CAB=90度,所以AC⊥AB,
又因为PM⊥AB,PN⊥AC,所以四边形PMAN为一个矩形,
若想要PMAN为正方形,只要保证PMAN有2个临边相等就可以了。
下面证明PMAN有2个临边相等。
需要用到点到直线的距离公式(课本上应该有这个公式):
点(x0,y0)到直线Ax+By+C=0的距离公式为:d=(Ax0+By0+C)的绝对值/根号下(A^2+B^2).
不妨我们证明PM=PN,P点已知为(m,n),
代入距离公式最终整理得到:(2m+n-4)的绝对值=(m-2n-2)的绝对值
解绝对值方程得到只有一个点P(1/6,11/18)满足条件,(其余三个点都舍掉了)。
还有一点需要提醒你第(2)中求出的抛物线有2条,还有一条是x=(-1/4)(y-2)^2+1,解法类似。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询