
求Sn=1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
1个回答
展开全部
因为1/(1+2+3...+n)=2/(n*(n+1))
所以对式子裂项相加
Sn=2/2+2/(2*3)+...+2/(n*(n+1))
把2提出来
Sn=2(1/2+1/(2*3)+....+1/(n*(n+1))
Sn=2(1-1/2+1/2-1/3+......+1/n-1/(n+1))
Sn=2(1-1/(n+1))
Sn=2-2/(n+1)
所以对式子裂项相加
Sn=2/2+2/(2*3)+...+2/(n*(n+1))
把2提出来
Sn=2(1/2+1/(2*3)+....+1/(n*(n+1))
Sn=2(1-1/2+1/2-1/3+......+1/n-1/(n+1))
Sn=2(1-1/(n+1))
Sn=2-2/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询