a为何值时y=ax^2与y=lnx相切?

 我来答
牢霜贯游
2020-07-12 · TA获得超过1028个赞
知道小有建树答主
回答量:1887
采纳率:92%
帮助的人:8.8万
展开全部
这两条曲线相切时,切点去的导数应相等,因而对两条曲线分别求导:
y=ax^2 求导得 y=2ax
y=lnx 求导得 y=1/x
切点处导数相等,所以
2ax=1/x 得
a=1/(2x^2)——(1)
又因为 曲线相切,必在切点处相交
则ax^2=lnx 将(1)式代入,消去a,
得x=e^0.5
将x的值带入(1)式,
可得a=1/2e.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式