长度收缩效应公式
关于洛伦兹变换推导长度收缩的问题,原推导过程:1.长度收缩效应.L'=L*√(1-v^2/c^2).分析:设有一刚性杆沿x轴静止放置在S系中,两个端点的空间坐标分别为x(...
关于洛伦兹变换推导长度收缩的问题,
原推导过程:1.长度收缩效应.L'=L*√(1-v^2/c^2).
分析:设有一刚性杆沿x轴静止放置在S系中,两个端点的空间坐标分别为x(1)和x(2),则杆在S系中的长度为 L=x(2)-x(1),但从与杆有相对运动v的参照系S'中测得的长度L'=x'(2)-x'(1) 则会收缩到“固有长度”的√(1-v^2/c^2)倍,这是因为根据相对论的洛仑兹坐标变换,在S'系中测得的杆的两个端点在同一时刻t'的位置坐标x'(1)和x'(2)与S系中的坐标x(1)和x(2)有如下关系:
x(1)=[x'(1)+vt']/√(1-v^2/c^2),
x(2)=[x'(2)+vt']/√(1-v^2/c^2),
于是
L=x(2)-x(1)=[x'(2)+vt']/√(1-v^2/c^2)-[x'(1)+vt']/√(1-v^2/c^2)
=[x'(2)-x'(1)]/√(1-v^2/c^2)=L'/√(1-v^2/c^2),
即 L'=L*√(1-v^2/c^2).
但为什么不可以:
L'=x'(2)-x'(1)=[x(2)-vt]/√(1-v^2/c^2)-[x(1)+vt]/√(1-v^2/c^2)
=[x(2)-x(1)]/√(1-v^2/c^2)=L/√(1-v^2/c^2),
即 L=L'*√(1-v^2/c^2). 展开
原推导过程:1.长度收缩效应.L'=L*√(1-v^2/c^2).
分析:设有一刚性杆沿x轴静止放置在S系中,两个端点的空间坐标分别为x(1)和x(2),则杆在S系中的长度为 L=x(2)-x(1),但从与杆有相对运动v的参照系S'中测得的长度L'=x'(2)-x'(1) 则会收缩到“固有长度”的√(1-v^2/c^2)倍,这是因为根据相对论的洛仑兹坐标变换,在S'系中测得的杆的两个端点在同一时刻t'的位置坐标x'(1)和x'(2)与S系中的坐标x(1)和x(2)有如下关系:
x(1)=[x'(1)+vt']/√(1-v^2/c^2),
x(2)=[x'(2)+vt']/√(1-v^2/c^2),
于是
L=x(2)-x(1)=[x'(2)+vt']/√(1-v^2/c^2)-[x'(1)+vt']/√(1-v^2/c^2)
=[x'(2)-x'(1)]/√(1-v^2/c^2)=L'/√(1-v^2/c^2),
即 L'=L*√(1-v^2/c^2).
但为什么不可以:
L'=x'(2)-x'(1)=[x(2)-vt]/√(1-v^2/c^2)-[x(1)+vt]/√(1-v^2/c^2)
=[x(2)-x(1)]/√(1-v^2/c^2)=L/√(1-v^2/c^2),
即 L=L'*√(1-v^2/c^2). 展开
1个回答
希卓
2024-10-17 广告
2024-10-17 广告
分布式应变监测技术是现代结构健康监测的重要组成部分。它通过在结构内部或表面布置多个应变传感器,实现对结构变形和应变的连续、实时监测。这种技术能够准确捕捉结构在各种载荷和环境条件下的应变响应,为结构的安全评估、损伤预警和寿命预测提供重要数据支...
点击进入详情页
本回答由希卓提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询