最小公倍数怎么求?
计算方法
1、分解质因数法
先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
比如求45和30的最小公倍数。
45=3*3*5
30=2*3*5
不同的质因数是2。5,3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3.
最小公倍数等于2*3*3*5=90
又如计算36和270的最小公倍数
36=2*2*3*3
270=2*3*3*3*5
不同的质因数是5。2这个质因数在36中比较多,为两个,所以乘两次;3这个质因数在270个比较多,为三个,所以乘三次。
最小公倍数等于2*2*3*3*3*5=540
20和40的最小公倍数是40
2、公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。
扩展资料
性质及特点
最小公倍数的性质:公倍数(common multiple)指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。
最大公因数和最小公倍数之间的性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。
最小公倍数特点:倍数的只有最小的没有最大,因为两个数的倍数可以无穷大。
1、最小公倍数=两数的乘积/最大公约(因)数。
2、分解质因数法:先列出相关数的质因数,最小公倍数等于所有的质因数的乘积。
3、公式法:由于两个数的乘积,等于这两个数的最大公约数与最小公倍数的积,所以求最小公倍数需先求出最大公约数,用公式求出最小公倍数。
扩展资料
最大公约数的求法:
(1)用分解质因数的方法,把公有的质因数相乘。
(2)用短除法的形式求两个数的最大公约数。
(3)特殊情况:如果两个数互质,它们的最大公约数是1。
如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。
要求最小公倍数的话,是要用竖式进行分解的,也就是说要先把两个式子的所有的公因数找出来,然后公因数相乘,再加上两个数的余数相乘。
比如求45和30的最小公倍数。
45=3*3*5
30=2*3*5
不同的质因数是2。5,3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3。
扩展资料:
自然数a、b的最小公倍数可以记作[a,b],自然数a、b的最大公因数可以记作(a、b),当(a、b)=1时,[a、b]= a×b。如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆。
参考资料来源:百度百科-最小公倍数
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]等于a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。