空集属于空集吗?
1个回答
展开全部
空集属于有限集。
定义:不含任何元素的集合成为空集。表示方法:用符号Φ表示,考虑到空集是实数线(或任意拓扑空间)的子集,空集既是开集、又是闭集。空集的边界点集合是空集,是它的子集,因此空集是闭集。
空集的性质:
1、对任意集合 A,空集是 A 的子集:∀A:Ø ⊆ A;
2、对任意集合 A,空集和 A 的并集为 A:∀A:A ∪ Ø = A;
3、对任意非空集合 A,空集是 A的真子集:∀A,,,若A≠Ø,则Ø 真包含于 A;
4、对任意集合 A,空集和 A 的交集为空集:∀A,A ∩ Ø = Ø;
5、对任意集合 A,空集和 A 的笛卡尔积为空集:∀A,A × Ø = Ø;
6、空集的唯一子集是空集本身:∀A,若 A ⊆ Ø ⊆ A,则 A= Ø;∀A,若A= Ø,则A ⊆ Ø ⊆ A;
7、空集的元素个数(即它的势)为零;
8、特别的,空集是有限的:| Ø | = 0;
9、对于全集,空集的补集为全集:CUØ=U。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询