函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:
1、f(x)在x0及其左右近旁有定义;
2、f(x)在x0的极限存在;
3、f(x)在x0的极限值与函数值f(x0)相等。
一致连续性说明
闭区间上的连续函数在该区间上一致连续。
所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
证明:利用有限覆盖定理:如果H是闭区间[a,b]的一个无限开覆盖,那么能从H中选择有限个开区间来覆盖[a,b]。详细证法参考相应词条。
以上内容参考 百度百科—连续函数