微分方程的通解求法

麻烦给列下都有哪几种。跟大概的过程。... 麻烦给列下都有哪几种。跟大概的过程。 展开
匿名用户
推荐于2017-09-05
展开全部
二阶常系数齐次线性微分方程解法:

特征根法是解常系数齐次线性微分方程的一种通用方法。
设特征方程r*r+p*r+q=0两根为r1,r2。
1 若实根r1不等于r2
y=c1*e^(r1x)+c2*e^(r2x).
2 若实根r1=r2
y=(c1+c2x)*e^(r1x)
3 若有一对共轭复根(略)
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
仇秋英崇乙
2019-09-09 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:863万
展开全部
解微分方程y'-3xy=2x
解:这是一个典型的一阶线性微分方程。其基本解法(程式化解法)如下:
先求一阶线性齐次方程y'-3xy=0的通解:
dy/dx=3xy;分离变量得dy/y=3xdx;积分之,得lny=(3/2)x²+lnc₁;即得y=c₁e^[(3/2)x²;
将c₁换成x的函数u,即y=ue^[(3/2)x²].............(1)
将(1)的两边对x取导数得:dy/dx=y'=(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]........(2)
将(1)和(2)代入原方程得:
(du/dx)e^[(3/2)x²]+3xue^[(3/2)x²]-3xue^[(3/2)x²]=2x
故得(du/dx)e^[(3/2)x²]=2x;分离变量得du=2xe^[-(3/2)x²]dx;
积分之得u=∫2xe^[-(3/2)x²]dx=(-2/3)∫de^[-(3/2)x²]=-(2/3)e^[-(3/2)x²]+c
代入(1)式即得通解y={-(2/3)e^[-(3/2)x²]+c}e^[(3/2)x²]=-2/3+ce^[(3/2)x²]
【此解法谓之“参数变异法”或“常数变异法”】
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
名字叫难忘啊DM
高粉答主

2020-02-29 · 醉心答题,欢迎关注
知道答主
回答量:5.8万
采纳率:3%
帮助的人:2818万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shawhom
高粉答主

2010-05-09 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11610 获赞数:27933

向TA提问 私信TA
展开全部
关于一阶微分方程:
齐次方程使用分离变量法,把x,y挪到各自一边,各自求积分
变量代换法(令u=y/x)
非齐次方程,使用公式法,y=e^(-∫p(x)dx)(c+e^(-∫p(x)q(x)dx)
还有一些特殊的,比如伯努利方程

二阶齐次方程,代换法
令y'=p,则y''=pdp/dy
层层积分法,
二阶非齐次,使用公式法
形如y''+qy'+py=Q(x)
先求齐次方程通解,
先求特征根:r^2+qr+p=0
则齐次方程通解为:
c1e^(r1x)+c2e^(r2x) 有两不等实根
(c1+c2x)1e^(r1x) 有两等实根
e^(r1x)(c1cosr2x+c2sinr2x) 有虚根r1+ir2
再求特解
如果特征根与Q(x)指数有一个相等,则可设特解为xQ(x)
如果特征根与Q(x)指数有2个相等,则可设特解为x^2Q(x)
如果特征根与Q(x)指数有没个相等,则可设特解为Q(x)
通解=特解+齐次方程解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式