幂函数运算法则

 我来答
天罗网17
2022-07-13 · TA获得超过6190个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.2万
展开全部

幂函数运算法则:同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n);同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n)等。

运算法则

同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^(m+n)

同底数幂相除,底数不变,指数相减,即a^m/a^n=a^(m-n),

幂的乘方,底数不变,指数相乘,即(a^m)^n=a^(mn),

积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即(a^mb^n)^p=a^(mp)*b^(np).

(其中m,n,p都是整数,且a,b均不为0。)

幂函数的定义

形如y=xα(a∈R)的函数称为幂函数,其中x是自变量,α为常数。

注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。

幂函数的性质

取正值

当α>0时,幂函数y=x^a有下列性质:

a、图像都经过点(1,1)(0,0);

b、函数的图像在区间[0,+∞)上是增函数

c、在第一象限内,α>1时,导数值逐渐增大;0<α<1时,导数值逐渐减小,趋近于0。

取负值

当α<0时,幂函数y=x^a有下列性质:

a、图像都通过点(1,1);

b、图像在区间(0,+∞)上是减函数

c、在第一象限内,有两条渐近线,自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

取零

当a=0时,幂函数y=xa有下列性质:

a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。(00没有意义)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式