证明方程x的5次方+x-1=0只有一个正根
展开全部
g(x)=x^5+x-1
则g′x)=5x^4+1>0
g(x)=x^5+x-1在R上是单调增函数.
又当g(0)=-1
g(1)=1^5+1-1=1
则必定有一正根带(0,1)之间
又g(x)=x^5+x-1在R上是单调增函数
g(x)=0必定只有一解
于是方程x^5+x-1=0只有一个正根
则g′x)=5x^4+1>0
g(x)=x^5+x-1在R上是单调增函数.
又当g(0)=-1
g(1)=1^5+1-1=1
则必定有一正根带(0,1)之间
又g(x)=x^5+x-1在R上是单调增函数
g(x)=0必定只有一解
于是方程x^5+x-1=0只有一个正根
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询