三次方程求根公式?

 我来答
世纪网络17
2022-05-11 · TA获得超过5896个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:136万
展开全部
ax^3+bx^2+cx+d的标准型
化成
x^3+(b/a)x^2+(c/a)x+(d/a)=0
可以写成
x^3+a1*x^2+a2*x+a3=0
其中a1=b/a,a2=c/a,a3=d/a
令y=x-a1/3
则y^3+px+q=0
其中p=-(a1^2/3)+a2
q=(2a1^3/27)-(a1*a2)/3+a3
2)用1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2
2、方程x^3=A的解为x1=A(1/3),x2=A^(1/3)*ω,x3= A^(1/3)*ω^2
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+ax^2+bx+c=0的形式.再令x=y-a/3,代入可消去次高项,变成x^3+px+q=0的形式.
设x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①
如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,由一元二次方程韦达定理u^3和V^3是方程
y^2+qy-p^3/27=0的两个根.
解之得,y=-q/2±(q^2/4+p^3/27)^(1/2)
不妨设A=-q/2-(q^2/4+p^3/27)^(1/2),B=-q/2+(q^2/4+p^3/27)^(1/2)
则u^3=A,v^3=B
u= A(1/3)或者A^(1/3)*ω或者A^(1/3)*ω^2
v= B(1/3)或者B^(1/3)*ω或者B^(1/3)*ω^2
但是考虑到uv=-p/3,所以u、v只有三组
u1= A(1/3),v1= B(1/3)
u2=A^(1/3)*ω,v2=B^(1/3)*ω^2
u3=A^(1/3)*ω^2,v3=B^(1/3)*ω
那么方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1= A(1/3)+B(1/3)
x2= A^(1/3)*ω+B^(1/3)*ω^2
x3= A^(1/3)*ω^2+B^(1/3)*ω
这正是著名的卡尔丹公式.你直接套用就可以求解了.
△=q^2/4+p^3/27为三次方程的判别式.
当△>=0时,有一个实根和两个共轭复根
当△
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式