空间直线方程如何化为对称式
1个回答
展开全部
举一个实例.把{2x+3y-4z+2=0 ;x+2y+3z-1=0 化为对称式 .
方法一:平面 2x+3y-4z+2=0 的法向量为 n1 =(2,3,-4),
平面 x+2y+3z-1=0 的法向量为 n2 =(1,2,3),
因此直线的方向向量为 v = n1×n2 =(17,-10,1)(向量叉乘会吧?)
取 x = 10,y = -6,z = 1 ,知直线过点 P(10,-6,1),
所以直线的对称式方程为 (x-10)/17 = (y+6)/(-10) = (z-1)/1 .
方法二:把 z 当已知数,可解得 x = 17z-7 ,y = 4-10z ,
由此得 (x+7)/17 = (y-4)/(-10) = z ,把最后的 z 改写成 (z-0)/1 ,就得结果.
方法三:取 z 的两个值如 z1 = 1 ,z2 = 2,
代入原方程可知直线过 A(10,-6,1),B(27,-16,2),
所以直线的方向向量为 AB =(27-10,-16+6,2-1)=(17,-10,1),
所以直线的方程为 (x-27)/17 = (y+16)/(-10) = (z-2)/1 .
(三个方法得到的结果不一样是吧?这只是形式上不同,本质上它们是同一条直线)
方法一:平面 2x+3y-4z+2=0 的法向量为 n1 =(2,3,-4),
平面 x+2y+3z-1=0 的法向量为 n2 =(1,2,3),
因此直线的方向向量为 v = n1×n2 =(17,-10,1)(向量叉乘会吧?)
取 x = 10,y = -6,z = 1 ,知直线过点 P(10,-6,1),
所以直线的对称式方程为 (x-10)/17 = (y+6)/(-10) = (z-1)/1 .
方法二:把 z 当已知数,可解得 x = 17z-7 ,y = 4-10z ,
由此得 (x+7)/17 = (y-4)/(-10) = z ,把最后的 z 改写成 (z-0)/1 ,就得结果.
方法三:取 z 的两个值如 z1 = 1 ,z2 = 2,
代入原方程可知直线过 A(10,-6,1),B(27,-16,2),
所以直线的方向向量为 AB =(27-10,-16+6,2-1)=(17,-10,1),
所以直线的方程为 (x-27)/17 = (y+16)/(-10) = (z-2)/1 .
(三个方法得到的结果不一样是吧?这只是形式上不同,本质上它们是同一条直线)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询