设f(t)是二次可微函数且f''(t)不等于0 x=f'(t),y=tf'(t)-f(t),求dy/dx,d^2y/dx^2 我来答 1个回答 #热议# 应届生在签三方时要注意什么? 大沈他次苹0B 2022-06-10 · TA获得超过7323个赞 知道大有可为答主 回答量:3059 采纳率:100% 帮助的人:177万 我也去答题访问个人页 关注 展开全部 dx/dt=f''(t)dy/dt=f'(t)+tf''(t)-f'(t)=tf''(t)dy/dx=(dy/dt)/(dx/dt)=1/td^2y/dt^2=f''(t)+tf'''(t)d^2y/dx^2=(d^2y/dt^2)/[(dx/dt)*(dx/dt)]=1/f''(t)+tf'''(t)/[f''(t)^2] 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: