f(x)在x=0处连续说明什么?

 我来答
知识改变命运7788
高能答主

2022-03-05 · 只要付出,就有收获,好好学习。
知识改变命运7788
采纳数:1341 获赞数:7409

向TA提问 私信TA
展开全部

若函数f(x)在x=0处连续,则(x趋向于零时),limf(x)=f(0)。

此时,若:limf(x)/x(x趋向于零时)存在,必有:f(0)=0。

故:(x趋向于零时) lim{[f(x)-f(0)]/(x-0)}=lim{f(x)/x}。

即知:f(x)在x=0处可导。

相关信息: 

 根据可导与连续的关系定理:函数f(x)在点x0处可导,则f(x)在点x0处连续,但逆命题不成立。

“函数f(x)在点x0处有连续”是“函数f(x)在x0处极限存在”的“充分条件”。

因为“函数f(x)在点x0处有连续”,则f(x)在点x0处的左极限=f(x)在点x0处的右极限=f(x0).即,函数f(x)在x0处极限=f(x0)。

“函数f(x)在x0处极限存在”,此时,①f(x)可以在x0无定义. 必定f(x)在x0不连续②或有可能,f(x)在x0有定义,但f(x0)≠f(x)在x0处极限, 必定f(x)在x0不连续。

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
学士学古文章
2023-07-16 · 超过45用户采纳过TA的回答
知道小有建树答主
回答量:324
采纳率:100%
帮助的人:4.2万
展开全部
如果函数 f(x) 在 x=0 处连续,那么表示函数在 x=0 的左右两侧的极限存在且相等,并且函数在 x=0 处的函数值也存在,并且等于这个极限值。
更具体地说,如果 f(x) 在 x=0 处连续,需要满足以下三个条件:
1. 左极限和右极限存在且相等:lim┬(x0⁻) f(x) = lim┬(x0⁺) f(x)。
这表示靠近 x=0 的左边和右边的极限值存在,并且相等。也就是说,无论从左侧或右侧接近 x=0,函数都趋向于相同的极限值。
2. 函数值存在:f(0)存在。
这表示函数在 x=0 处有定义,它的函数值存在。
3. 极限值和函数值相等:lim┬(x0) f(x) = f(0)。
这表示当 x 趋近于 0 时,函数 f(x) 的极限值等于它在 x=0 处的函数值。换句话说,函数在 x=0 处没有跳跃或间断。
因此,如果 f(x) 在 x=0 处连续,那么函数在该点周围的图像是连续、无间断的,没有突变或断裂。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一切无需缘由
2023-07-14 · 超过37用户采纳过TA的回答
知道小有建树答主
回答量:277
采纳率:0%
帮助的人:3.4万
展开全部

当说函数 f(x) 在 x = 0 处连续时,意味着函数在 x = 0 的点上没有跳跃、断裂或间断,并且可以通过 x = 0 的点进行平滑的连接。

具体来说,当函数 f(x) 在 x = 0 处连续时,以下三个条件需要同时满足:

  • f(0) 存在:函数在 x = 0 处有定义,即 f(0) 有一个确定的实数值。

  • 左极限和右极限存在:函数在 x = 0 的左侧极限和右侧极限都存在,即 lim┬(x→0⁻) f(x) 和 lim┬(x→0⁺) f(x) 都存在。

  • 极限等于函数值:函数在 x = 0 的左侧极限和右侧极限都等于函数在 x = 0 处的函数值,即 lim┬(x→0⁻) f(x) = lim┬(x→0⁺) f(x) = f(0)。

  • 这三个条件的满足表明函数 f(x) 在 x = 0 处没有间断、跳跃或断裂,并且可以在 x = 0 的点上平滑地绘制连续的曲线。

    连续性是函数的重要性质之一,它保证了函数在给定点上的光滑性和连贯性,使得我们可以在该点进行进一步的分析和推导。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
安you岁月
2022-05-16
知道答主
回答量:2
采纳率:0%
帮助的人:658
展开全部
首先,由连续的定义得“该点的函数值=极限值”即,lim(x趋于xo)=f(xo)

因此,f(x)在x=0点连续,可以得到lim(x趋于0)=f(0)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式