四分位数是什么?
四分位数(Quartiles),四分位数是将样本分成四个相等部分的值。包括:第1四分位数(也称下四分位数,P25)、第2四分位数(即中位数,P50)与第3四分位数(也称上四分位数,P75)。利用四分位数,可以快速评估数据集的展开和集中趋势。
四分位数间距(Q)为P75与P25之差,同类资料比较,Q越大意味着数据间变异越大。Q可用于各种分布的资料,特别是服从偏斜分布的资料。
常把中位数和Q结合起来描述变量的平均水平和变异程度。与极差相比,Q较稳定,受两端极大或极小数据的影响小,但仍未考虑数据中每个观测值的离散程度。
中位数(Median),即P50,是指将原始观测值按大小排列后,位次居中的数值。理论上,大于和小于该值的个案数各占一半。
由于中位数不是利用全部观测值计算出来的,它只与位次居中的观测值大小有关,因此不受分布两端特大或特小值的影响。对于分布末端无确定值的资料,不能直接计算平均值和几何平均数时,亦可计算中位数。
扩展资料
运用:
1、求数列2,4,4,5,7,7,7,7,7,7,8,8,9,9,9,9的四分位数。
解:这组数已经按照从小到大的顺序排好了,那么首先求Q2这个数列一共有16个数,是偶数,Q2应该为第8和第9个数的平均值,故Q2 = (7 + 7)/ 2 = 7. 那么这个数列就被分成了下面两个部分。
2,4,4,5,7,7,7,7,7,7,8,8,9,9,9,9
Q1为数列1的中位数(Q1 =(5 + 7)/ 2 = 6.同理可以求出Q3 = 8.5。
那么如果数列中数字的个数为奇数该怎么办呢?
2、求数列5,6,2,4,7,9,4的四分位数。
解:首先按照从大到小的顺序对其进行排练,新的顺序是:2,4,4,5,6,7,9。
求Q2。这组数一共有7个数,那么Q2为第四个数,即Q2 = 5。
2,4,4,5,6,7,9
Q1为数列1的中位数,即Q1 = 4。同理Q2 = 7。
参考资料来源:百度百科-中位数
参考资料来源:百度百科-四分位数