最大的九位数与最小的十位数相差多少
最大的九位数与最小的十位数相差1。
整数部分的数位从右起,每4个数位是一级,个级包括个位、十位、百位和千位,表示多少个一;万级包括万位、十万位、百万位和千万位,表示多少个万。亿级包括亿位、十亿位、百亿位和千亿位,表示多少个亿,小数部分的数位从左往右依次为十分位、百分位、千分位……表示多少个十分之一、百分之一、千分之一。
数位顺序表从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”。同一个数字,由于所在的数位不同,它所表示的数值也就不同。例如,在用阿拉伯数字表示数时,同一个6,放在十位上表示6个十,放在百位上表示6个百,放在亿位上表示6个亿等。
数学结构:
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。
因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。