直角三角形的定理
直角三角形(right triangle)是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
基本简介
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边.
等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线.
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.
(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等).
(2)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。
(3)三角形的三条高的交点叫做三角形的垂心。
(4)三角形的中位线平行于第三边且等于第三边的二分之一。
(5)三角形的一条内角平分线与两条外角平分线交于一点,该点即为三角形的旁心。
注意:
①任意三角形的内心、重心都在三角形的内部 .
②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上。
(直角三角形的垂心为直角顶点,外心为斜边中点。)
④锐角三角形垂心、外心在三角形内部。
⑤任意三角形的旁心一定在三角形的外部。