请问y= tanx有什么奇偶性?

 我来答
五百学长
高能答主

2023-01-15 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:3972
采纳率:100%
帮助的人:69.4万
展开全部

y=tanx的定义域是:{x|x≠kπ+π/2,k∈Z};值域是:R最小正周期是T=π;奇偶性是:奇函数单调增区间:(kπ-π/2,kπ+π/2)(k∈Z)
无单调减区间;对称轴:无;对称中心:(kπ/2,0)(k∈Z) ,因为是单调增函数。

若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间。此时也说函数是这一区间上的单调函数。

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2)。那么就说f(x)在这个区间上是增函数。

相反地,如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么f(x)在这个区间上是减函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式