高等数学利用极坐标计算二重积分:∫∫ln(1+x^2+y^2)dσ,其中D是由圆周x^2+y^2=1

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr

算不定积分∫rln(1+r^2)dr

=∫1/2ln(1+r^2)d(1+r^2)

=1/2∫ln(1+r^2)d(1+r^2)

∫lnxdx=xlnx-x+C

所以1/2∫ln(1+r^2)d(1+r^2)

=1/2[(1+r^2)ln(1+r^2)-(1+r^2)]+C

则∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr

=π/2∫(0到1)ln(1+r^2)rdr

=π/2[1/2((1+r^2)ln(1+r^2)-(1+r^2))]|(0到1)

=π/4(2ln2-2-(-1))

=(2ln2-1)π/4

扩展资料

积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。


比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式