已知角α的正切值为b/a,求角α的正弦值和余弦值
1个回答
展开全部
tanα=b/a,则(tanα)^2=b^2/a^2=(sinα)^2/(cosα)^2=[1-(cosα)^2]/(cosα)^2,可知,
(cosα)^2=1/[1+(tanα)^2].最后求得:cosα=|根号下(1/[1+b^2/a^2)]|,
同理,(tanα)^2=b^2/a^2=(sinα)^2/(cosα)^2=(sinα)^2/[1-(sinα)^2],可知,
(sinα)^2=1+1/(tanα)^2.最后求得:sinα=|根号下(1+a^2/b^2)|.
因为,a,b正负未知,所以要加上绝对值.
(cosα)^2=1/[1+(tanα)^2].最后求得:cosα=|根号下(1/[1+b^2/a^2)]|,
同理,(tanα)^2=b^2/a^2=(sinα)^2/(cosα)^2=(sinα)^2/[1-(sinα)^2],可知,
(sinα)^2=1+1/(tanα)^2.最后求得:sinα=|根号下(1+a^2/b^2)|.
因为,a,b正负未知,所以要加上绝对值.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询