计算行列式D=|a b c a^2 b^2 c^2 a+a^3 b+b^2 c+c^3| 的值
1个回答
展开全部
第3行减第1行
1,2,3列分别提出a,b,c
行列式化为范德蒙行列式
D = abc(a-b)(a-c)(c-b)
若n阶方阵A=(aij),则A相应的行列式D记作D=|A|=detA=det(aij),若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵。
扩展资料:
若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询