用微分中值定理证明方程x5 +x一1=0只有一个正根?速求解
1个回答
展开全部
此类题的解法:找出要求的x区间(本题是0~+∞)、证明函数在该区间上连续且单调、证明函数在区间左右端点上的值分别位于指定值(本题是0)两侧。即可证明函数在该区间内有且只有一解。
方程求导5x^4+1,导数恒正,所以单调递增。
f(0)=-1<0
f(+∞)=+∞>0
所以有且只有一个正根。
扩展资料
需要求出曲线上一点的斜率时,前人往往采用作图法,将该点的切线画出,以切线的斜率作为该点的斜率。然而,画出来的切线是有误差的,也就是说,以作图法得到的斜率并不是完全准确的斜率 。微分最早就是为了从数学上解决这一问题而产生的。
以y=x2为例,我们需要求出该曲线在(3,9)上的斜率,当△x与△y的值越接近于0,过这两点直线的斜率就越接近所求的斜率m,当△x与△y的值变得无限接近于0时,直线的斜率就是点的斜率。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询