行列式在什么情况下为零
展开全部
若行列式中有两行对应成比例,则行列式为0;若行列式中有两行相同,则行列式为0;若行列式中有一行的元素全为0,则行列式为0。
行列式定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广,或者说在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
扩展资料:
阶行列式的性质
性质1:行列互换,行列式不变。
性质2:把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。
性质3:如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。
性质4:如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)
性质5:如果行列式中两行(列)成比例,那么行列式为零。
性质6:把一行(列)的倍数加到另一行(列),行列式不变。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |