什么是正态分布?
2个回答
展开全部
标准正态分布密度函数:f(x)=(1/√2π)exp(-x^2/2)。而其中exp(-x^2/2)为e的-x^2/2次方,其定义域为(-∞,+∞),从概率密度表达式可以看出,f(x)是偶函数,即f(x)的图像关于y轴对称。
Φ(x)定义为服从标准正态分布的随机变量X的分布函数,其值为对f(x)关于x积分,从-∞积到x。从f(x)图像上看,Φ(x)的值相当于f(x)曲线一下,x轴曲线以上,区域为(-∞,x)这段的面积。由于f(x)为偶函数,且有分布函数性质Φ(+∞)=1,可以求出Φ(0)=0.5。
正态分布概率密度函数特性
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。 曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
展开全部
为什么叫“正态分布”,也有地方叫“常态分布”,这两个名字都不太直观,但如果我们各取一字变为“正常分布”,就很白话了,而这正是“正态分布”的本质含义,Normal Distribution。它太常见了,基本上能描述所有常见的事物和现象:正常人群的身高、体重、考试成绩、家庭收入等等。这里的描述是什么意思呢?就是说这些指标背后的数据都会呈现一种中间密集、两边稀疏的特征。以身高为例,服从正态分布意味着大部分人的身高都会在人群的平均身高上下波动,特别矮和特别高的都比较少见。
你可能不禁要问,这是为什么?我们认为,这其实与我们前面所讲的同质与变异的概念相关(参见课程第三讲 统计学核心思维与统计描述)。因为我们研究的对象具有同质性(比如都是成年的中国男子),所以其特征往往是趋同的,即存在一个基准;但由于个体变异的存在(当然变异不会太大),这些特征又不是完全一致,所以会以一定的幅度在基准的上下波动,从而形成了中间密集,两侧稀疏的特征。
2. 连续型随机变量研究区间概率
了解了正态分布的基本思想,我们来看看实际应用中我们需要掌握的要点。首先,正态分布属于“连续型随机变量分布”的一类。我们知道,对于连续型随机变量,我们不关注“点概率”,只关注“区间概率”,这是什么意思?
我们看这个例子,假定随机变量X指是“北京市成年男子的身高”,理论上它可以取任意正数,所以我们把它当做一个连续型随机变量(连续型变量,就是指可以取某一区间或整个实数轴上的任意一个值的变量)来看待。这里,我们先想一想如何计算P(X =1.87)? 即身高恰好完全exactly等于1.87的概率是多少,这就是所谓的“点概率”。更极端一点,让随机变量Y是[0,1]这个区间上的任意一点,那么Y的取值有多少个呢?无数多个,我们数不清楚,所以Y 取某一个具体的值的概率是1除以无数,即可以看做是0。于是,这里透露一个很重要的结论:连续型随机变量取任意某个确定的值的概率均为0。因此,对于连续型随机变量,我们通常不研究它取某个特定值的概率,而研究它在某一段区间上的取值,比如身高在1.70~1.80的概率。
3. 概率密度函数
对于初学者来讲,“概率密度”可能是最不友好的一个概念,直接谈概率不行吗,好好的为什么要生出一个“密度”?的确,没有太多数理基础,这个概念着实不太好理解。虽然文字和数学公式上你可能感觉很陌生,但我们特别熟知的那条中间高、两边低的“钟形曲线”恰恰就是正态分布的概率密度曲线。前面我们讲了区间概率,这里你就可以通过区间的角度来理解概率密度曲线:曲线越高,也就代表着这个区别的概率越密集,简单理解成在同样大小的房子里,这个房间的人数更多、更挤。除此之外,另一个关于概率密度函数的重要知识点是,积分(面积)等于概率。随机变量X在某个区间比如(a,b)即a<X<b的概率,就是概率密度曲线在这个区间下的面积,数学上的表达就是密度函数在区间(a, b)上的积分。所以,概率的大小就是“概率密度函数曲线下的面积”的大小,这个不太起眼的概念实际上就决定了你日后是否能理解假设假设中所谓的“拒绝域”。
你可能不禁要问,这是为什么?我们认为,这其实与我们前面所讲的同质与变异的概念相关(参见课程第三讲 统计学核心思维与统计描述)。因为我们研究的对象具有同质性(比如都是成年的中国男子),所以其特征往往是趋同的,即存在一个基准;但由于个体变异的存在(当然变异不会太大),这些特征又不是完全一致,所以会以一定的幅度在基准的上下波动,从而形成了中间密集,两侧稀疏的特征。
2. 连续型随机变量研究区间概率
了解了正态分布的基本思想,我们来看看实际应用中我们需要掌握的要点。首先,正态分布属于“连续型随机变量分布”的一类。我们知道,对于连续型随机变量,我们不关注“点概率”,只关注“区间概率”,这是什么意思?
我们看这个例子,假定随机变量X指是“北京市成年男子的身高”,理论上它可以取任意正数,所以我们把它当做一个连续型随机变量(连续型变量,就是指可以取某一区间或整个实数轴上的任意一个值的变量)来看待。这里,我们先想一想如何计算P(X =1.87)? 即身高恰好完全exactly等于1.87的概率是多少,这就是所谓的“点概率”。更极端一点,让随机变量Y是[0,1]这个区间上的任意一点,那么Y的取值有多少个呢?无数多个,我们数不清楚,所以Y 取某一个具体的值的概率是1除以无数,即可以看做是0。于是,这里透露一个很重要的结论:连续型随机变量取任意某个确定的值的概率均为0。因此,对于连续型随机变量,我们通常不研究它取某个特定值的概率,而研究它在某一段区间上的取值,比如身高在1.70~1.80的概率。
3. 概率密度函数
对于初学者来讲,“概率密度”可能是最不友好的一个概念,直接谈概率不行吗,好好的为什么要生出一个“密度”?的确,没有太多数理基础,这个概念着实不太好理解。虽然文字和数学公式上你可能感觉很陌生,但我们特别熟知的那条中间高、两边低的“钟形曲线”恰恰就是正态分布的概率密度曲线。前面我们讲了区间概率,这里你就可以通过区间的角度来理解概率密度曲线:曲线越高,也就代表着这个区别的概率越密集,简单理解成在同样大小的房子里,这个房间的人数更多、更挤。除此之外,另一个关于概率密度函数的重要知识点是,积分(面积)等于概率。随机变量X在某个区间比如(a,b)即a<X<b的概率,就是概率密度曲线在这个区间下的面积,数学上的表达就是密度函数在区间(a, b)上的积分。所以,概率的大小就是“概率密度函数曲线下的面积”的大小,这个不太起眼的概念实际上就决定了你日后是否能理解假设假设中所谓的“拒绝域”。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |