已知a,b,均为正实数,且a+b=1,求(a+1/a)(b+1/b)的最小值
1个回答
展开全部
由a,b,均为正实数,且a+b=1可得ab<=1/4
原式=ab+1/(ab)+(a/b+b/a)=ab+1/(ab)+(a^2+b^2)/(ab)=ab+1/(ab)+(a^2+b^2+2ab)/(ab)-2
=ab+1/(ab)+(a+b)^2/(ab)-2=ab+1/(ab)+1/(ab)-2=ab+2/(ab)-2
于f(x)=x+2/x,在(0,根号2)上单调递减,故当ab=1/4时
原式取最小值=25/4
原式=ab+1/(ab)+(a/b+b/a)=ab+1/(ab)+(a^2+b^2)/(ab)=ab+1/(ab)+(a^2+b^2+2ab)/(ab)-2
=ab+1/(ab)+(a+b)^2/(ab)-2=ab+1/(ab)+1/(ab)-2=ab+2/(ab)-2
于f(x)=x+2/x,在(0,根号2)上单调递减,故当ab=1/4时
原式取最小值=25/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询