带根号的分式如何求极限

 我来答
春心月一轮圆2274
2014-08-29 · TA获得超过196个赞
知道答主
回答量:257
采纳率:98%
帮助的人:53.8万
展开全部
1:极限部分分子有理化为:
极限部分=[(1+x^2)-1]/[x^2*(√(1+x^2)+1]=1/[√(1+x^2)+1]
再取极限=1/2.

2:同理,分子有理化为:
极限部分=[(2-x)-x]/[(1-x)*√(2-x)+√x]
=2/[√(2-x)+√x]
再取极限=2/(1+1)=1.

3:取t=1/x,则x=1/t,t趋近于0,代入得到:
极限部分化简=[√(t^2+t+1)+2t]/(2+t)
再取极限=1/2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式