如果让宇宙中所有原子的原子核和电子都紧挨着、不留空隙,有多大?

 我来答
大沈他次苹0B
2022-08-28 · TA获得超过7338个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:179万
展开全部
宇宙在宏观和微观上确实有空隙

的确,宇宙虽然非常广大,但绝大部分空间是“空的”,星球、星系、星云和尘埃杂质所占宇宙空间比例很小,小的几乎可以忽略。如果把所有物质转换为氢原子,那宇宙的物质粒子密度大约每立方米只有一个氢原子。这还只是宇宙中宏观物质之间的空隙,那微观上每个原子内部又是什么情况呢?

我们知道原子由原子核与核外电子组成,现代科学已经探明,由质子和中子组成的原子核体积只占整个原子的几千亿分之一,

核外电子在这“无比巨大”的空间中运动,而核外电子的半径不大于10^-22米,与质子、中子相比完全可以忽略不计。因此如果把原子空间都压缩掉,只剩下原子核和电子,那全宇宙的实体物质又会缩小几千亿倍。
这种电子和原子核紧挨在一起的状态在宇宙中是存在的,就是我们常说的中子星。
所谓中子星就是全部都是由中子紧挨着组成的星体,是将核外电子压进原子核中的质子后,原子核全部变成中子后形成的。中子星的密度大得惊人,为10^11千克/立方厘米,即每立方厘米1亿吨,相当于一个花生米大小的物质重达1亿吨。

但是如果想把电子压进质子,然后把全是中子的原子核紧紧挨在一起需要很大的力量,形成这种状态或类似的状态需要特定条件。就目前人类的认识,这种状态是大质量恒星的最终演化产物,可以说原子收缩的过程就是相应质量的恒星演化的过程,下面我们简单作一介绍。
不同质量恒星演化的结果也是不同的
据科学研究表明,1.44倍以下太阳质量(钱德拉塞卡极限)的恒星在内部所有核聚变结束后,因失去抵抗恒星自身质量产生的强大引力的能力,恒星会在自身引力的作用下急剧收缩,原子中的核外电子克服泡利不相容原理带来的压力,摆脱原子核束缚,游离在原子核周围,原子空间被大大压缩,但这时的电子还并没有压进质子中,由这种状态形成的星体叫白矮星,它的密度为每立方厘米1吨。

质量在1.44倍――3.2倍太阳质量(奥本海默极限)的恒星在演化末期,自身强大的引力会进一步克服电子简并压,把电子压进质子形成中子,最终形成中子星。这种状态应该是题主所说的状态。当然大于3.2倍以上太阳质量的恒星会克服中子简并压,最终形成黑洞或夸克星。

由于黑洞和白矮星与本题无关,我们只作简单介绍,在此不多作讨论,我们只讨论中子星的状态。
对本题的回答
现在知道了中子星的密度(就是将来把原子核和电子紧挨在一起、不留空隙的密度)ρ=10^11千克/立方厘米,如果再知道宇宙的质量M,根据公式ρ=M/V,就可求出全宇宙所有原子的原子核和电子紧挨在一起、不留空隙的组合起来的体积V了。现在的问题是密度知道了,但真正宇宙的质量无法确定,目前我们只大体知道可观测宇宙的质量为10^54千克数量级,因此我们只能拿可观测宇宙来计算,取M为10^54千克,代入Ⅴ=M/ρ,即V=10^54/10^11=10^43立方厘米=10^37立方米。转换为球体,则V=4πr³/3,算出半径r=1336731471公里 13.4亿公里,这个距离还不如土星到太阳的平均距离14.3亿公里远。

当然,正如上面所说,超过3.2倍太阳质量的恒星是不会成为中子星的,因此全可观测宇宙物质的原子核不会老老实实凑在一起,它们会继续坍缩,最终可能成为黑洞。这个黑洞的视界可以通过史瓦西半径公式Rs=2GM/C²求得,其中G为万有引力常数,大小为6.67x10^-11牛·米²/千克²,M这里为宇宙总质量,C为光速,可求得Rs=1570亿光年。可以看出,如果把整个可观测宇宙看成一个黑洞,黑洞的史瓦西半径还大于宇宙成为中子星状态的半径,也大于现在可观测宇宙的半径(465亿光年),难怪有人说宇宙就是一个超级黑洞,

就像别的黑洞一样,连光也逃不出去,光速成为物体运动最高速,而人类就居住在黑洞里,竟然都活得好好的。哈哈,你们相信吗?

当然这也很像宇宙诞生的逆过程,它最终也有可能会收缩为一个奇点回到宇宙诞生前的状态。这时就没有什么黑洞视界了,整个宇宙收缩为一点了。

如果让宇宙中所有原子的原子核和电子都紧挨着、不留空隙,有多大?

这是一个非常有趣的话题,整个宇宙的原子核一个个都挨在一起,这将是一个如何的天体哈,当然事实上并不会存在这样的天体,但我们可以来讨论下假如存在这样的天体会如何!

可观测宇宙大约为930亿光年,整个可观测宇宙大约有10^80个原子,那么一个个原子核大约有多大呢,这好像是一个问题,因为是原子核堆积在一起?

一、原子核堆积在一起的是什么物质?

我们都知道决定元素属性的是原子,如果是氢原子那么组成氢元素,如果是铁原子那么组成的将是铁元素!请问是什么属性决定了氢原子直接的差异?

原子的属性有原子核中的质子决定

一个质子的是氢元素,两个质子的氦元素....二十六个质子的是铁元素,不同的中子数则决定同一种元素的同位素,它并不能决定元素的种类,但它会决定元素的活跃度,比如会因为衰变而成为另一种元素。

质子与质子以及中子之间是由强作用力结合在一起的,但在正常情况下电子与质子与中子并不能在一起,因为泡利不相容原理,多颗电子并不占据一个量子态,因此它们在正常条件下都围绕在原子核周围以电子云模式存在!

但在巨大压力的作用下,电子是可以被压入原子核与质子中和成中子,成为一个个中子挨着的状态,这就是传说中的中子星物质!

二、所有的中子都挨在一起有多大?

为什么把电子和质子丢了?如上文所说无限靠近的电子将和质子中合成中子,因此宇宙中剩下的都是中子,那么将这些中子都结合在一起有多大呢?

中子星的密度为10^11千克/立方厘米,而整个可观测宇宙的质量的其中一个数据是3.4 x 10^54千克!

那么这个球体的体积是: 3.4 x 10^43 立方厘米

即 3.4 x 10^37 立方米

如果是一个球体的话,半径大约为:200.9695亿千米的一个球体!

200亿千米大概是多大?我们来看一张图便可知!

1979年出发出发的旅行者1号,截至到2018年11月时它距离地球月216亿千米!刚好和这个中子组成的球体差不多大,也就是说这可中子球的直径并没有超出太阳的日球层多远!但广义上的太阳系以奥尔特云为界,直径达一光年!

三、假如这些物质都堆积在一起,会是什么天体?

其实超过奥本海默极限的中子星就坍缩为黑洞了,根本不可能累积到那么大,不过我们倒可以来计算下这个质量坍缩后的黑洞视界有多大!

根据上述公式,计算后的史瓦希半径高达:486.7亿光年,这和可观测宇宙的半径非常接近(可观测宇宙其中一个数据是半径465亿光年),当然这也是我们生活在一个黑洞里的原因由来!因为我们在黑洞的视界内,因此即使我们以光速都无法逃离这个处在视界内的宇宙!这个好玩的话题居然带出了黑洞宇宙话题,实在比较有意思!

当我们在晴朗的夜晚里仰望星空时,通常都会被天空中密密麻麻的星星吸引,这会给我们造成一种感觉,那就是宇宙是充实的,在宇宙空间中布满了各式各样的天体。

然而事实却并不是这样,因为不管是从宏观还是从微观的角度来看,我们所处的宇宙,都是一个不折不扣的“超级虚胖子”。

在我们的印象中,八大行星围绕着太阳有条不紊的运行,形成了一个熙熙攘攘的太阳系。但实际情况却是,这些行星非常稀疏地分布在一个半径大约为45亿公里的圆形区域,彼此之间相隔甚远。

假如将八大行星紧紧地挨在一起,仅仅是地球和月亮之间的距离(约38万公里),就可以将它们全部装下。需要指出的是,这样的物质密度在宇宙空间中已经算很高了,实际上,宇宙的密度比这要低很多,相关数据显示,宇宙的平均密度仅为(10^-29)克/立方厘米。

再来看微观世界,如果把一个原子比作一座50层的高楼大厦,那么这个原子内的原子核大约只有一个乒乓球那么大,而电子则只是这座高楼里漂浮的几粒尘埃,除此之外,整个原子空间里几乎什么都没有。

宇宙是如此的空旷,不免令人吃惊,同时也让人好奇,如果将宇宙中的所有原子核以及电子,全部都紧紧地挨在一起,形成一个不留空隙的物体,那么这个物体会有多大?

事实上,宇宙中确实存在着这种致密天体。在大质量恒星生命的末期,它们会因为失去核心的能量而坍塌,并发生威力巨大的超新星爆发,这时巨大的力量会将恒星核心中的电子压进了原子核,并与原子核内的质子中和形成了中子。

这些中子与原子核内之前的中子一起,被压缩得紧紧地挨在一起,就形成了一种被称之为“中子星”的天体。

考虑到宇宙的无限性,这里我们的讨论只能在限制在可观测宇宙的范围。又因为我们对暗能量、暗物质几乎一无所知,所以它们也不在我们今天的讨论范围内。

因此,我们可以将这个问题准确地定义为:如果将整个可观测宇宙压缩成一颗中子星,那这颗中子星有多大?

这个问题就比较简单了,我们只需要知道整个可观测宇宙的质量,以及中子星的密度,就可以得出答案。

已知中子星的密度约为 (10^14)克/立方厘米,而关于可观测宇宙的质量,目前科学界还没有统一的数据,这里以“WolframAlpha”(一个计算知识引擎)提供的数据为参考,即可观测宇宙的质量为(3.4 x 10^57)克。

根据体积公式“体积等于质量除以密度”,通过简单的计算,我们就可以得出,这颗“超级中子星”的体积为 3.4 x 10^43 立方厘米,即3400亿亿亿亿亿立方厘米。看起来这个数字很大,但实际换算一下,它只不过是一个半径约为200亿公里的球体而已。

广义太阳系的半径大约为1光年,而1光年的距离约为94605亿公里,也就是说这颗由整个可观测宇宙压缩成的“超级中子星”,其体积远远不如我们太阳系大。

是的,我们所处的宇宙就是这么空旷,平均算下来,每立方米的宇宙空间,就只有几个氢原子。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
健实(北京)分析仪器有限公司_
2023-06-13 广告
原子发射光谱法和原子吸收光谱法的异同点如下:1. 原理不同:原子发射光谱法是通过测试元素发射的特征谱线及谱线强度来定性定量的;原子吸收光谱法是通过测试元素对特征单色辐射的吸收值来定量的。2. 仪器基本结构不同:原子发射光谱法:原子发射使用火... 点击进入详情页
本回答由健实(北京)分析仪器有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式