已知数列{an}前n项的和为Sn,且满足Sn=1-nan(n=1,2,3...) 求{an}的通项公式

 我来答
舒适还明净的海鸥i
2022-08-31 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.5万
展开全部
由题得:
Sn=1-nan
于是有:
S(n-1)=1-(n-1)a(n-1)
两式相减得:
an=(n-1)a(n-1) - nan
移项后有:
(n+1)an=(n-1)a(n-1)
于是:
an=[(n-1)/(n+1)]a(n-1)
由前面可得:
an=[(n-1)/(n+1)]a(n-1)
a(n-1)=[(n-2)/(n)]a(n-2)
a(n-2)=[(n-3)/(n-1)]a(n-3)
…… …… ……
a4=[(3)/(5)]a3
a3=[(2)/(4)]a2
a2=[(1)/(3)]a1
连乘得到:
a2.a3.a4.an=[(1)/(3)]x[(2)/(4)]x[(3)/(5)]x……x[(n-1)/(n+1)]x[a1.a2.a3.a(n-1)]
=(1x2)[a1.a2.a3.a(n-1)]/[n(n+1)]
=2[a1.a2.a3.a(n-1)]/[n(n+1)]
约分后得:
an=2a1/[n(n+1)]
又因为:a1=1/2
代入得:
an=2a1/[n(n+1)]
=1/[n(n+1)]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式