数学建模是什么?
展开全部
数学建模是什么?
数学建模的详细定义网上多的我就不阐述了,说一点其他的~~
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~
数学建模是什么意思
数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。
数模是什么
又称数学建模。
数学模型是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、 *** 、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
静态和动态模型 静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。
分布参数和集中参数模型 分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散时间模型 模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型 随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型 用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型 线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在......>>
请问三维建模和数学建模有什么区别
三维模型是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。
三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;视频游戏产业将它们作为计算机与视频游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象,简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。触里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
数学建模是什么东西?能不能详细用几个例子讲解一下 60分
数学建模就是用数学工具,比如各种形式的方程来描述实际的物理世界。
比如,最简单的匀速直线运动,用s=vt来描述位移和速度与时间的关系,就是对这一物理运动的数学建模。
当然,还有更复杂的物理环境,就需要用到更高深的数学工具,比如多阶的微分方程,或是采用状态变量的方法对物理世界进行分析,但总而言之,都是用数学语言来描述物理世界。
一个数学建模例子
wenku.baidu/...Vo4Ooi
数学建模经典案例详解
wenku.baidu/...IQkSrO
数学建模大赛到底是干什么的?一定要会编程吗?
我曾参加过数学建模竞赛。全国大学生数学建模大赛目的是培养大学生能够在学习知识的同时,学会运用知识解决实际问题,学会将实际问题转化成数学问题,用数学知识来解决实际问题。并且,培养小组团结合作精神。必须是三人一组,不过最好可以是不同专业的三个人,这样知识面广,好解决问题,分工合作。最好会编程,但是不会的话,也可以求助会的人,比如求助你的老师或者会编程的同学。希望我的回答对你有帮助,也希望你能参加,这个大赛很能锻炼人。
数学建模的思路是什么?
数学建模关键是提炼数学模型,所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。 禒 第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。
数学建模的详细定义网上多的我就不阐述了,说一点其他的~~
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~
数学建模是什么意思
数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。
数模是什么
又称数学建模。
数学模型是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、 *** 、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
静态和动态模型 静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。
分布参数和集中参数模型 分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散时间模型 模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型 随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型 用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型 线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在......>>
请问三维建模和数学建模有什么区别
三维模型是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。
三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;视频游戏产业将它们作为计算机与视频游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象,简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。触里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
数学建模是什么东西?能不能详细用几个例子讲解一下 60分
数学建模就是用数学工具,比如各种形式的方程来描述实际的物理世界。
比如,最简单的匀速直线运动,用s=vt来描述位移和速度与时间的关系,就是对这一物理运动的数学建模。
当然,还有更复杂的物理环境,就需要用到更高深的数学工具,比如多阶的微分方程,或是采用状态变量的方法对物理世界进行分析,但总而言之,都是用数学语言来描述物理世界。
一个数学建模例子
wenku.baidu/...Vo4Ooi
数学建模经典案例详解
wenku.baidu/...IQkSrO
数学建模大赛到底是干什么的?一定要会编程吗?
我曾参加过数学建模竞赛。全国大学生数学建模大赛目的是培养大学生能够在学习知识的同时,学会运用知识解决实际问题,学会将实际问题转化成数学问题,用数学知识来解决实际问题。并且,培养小组团结合作精神。必须是三人一组,不过最好可以是不同专业的三个人,这样知识面广,好解决问题,分工合作。最好会编程,但是不会的话,也可以求助会的人,比如求助你的老师或者会编程的同学。希望我的回答对你有帮助,也希望你能参加,这个大赛很能锻炼人。
数学建模的思路是什么?
数学建模关键是提炼数学模型,所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。 禒 第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么?
第五步:按数学模型求出结果。
第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询