数学题目,要列方程
牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”这类题...
牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”
这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162
(这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207
(这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:
72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
请你算一算。
有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。如果养15只羊,几天能把牧场上不断生长的草吃尽呢?
要列方程
谢谢 展开
这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162
(这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207
(这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:
72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
请你算一算。
有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。如果养15只羊,几天能把牧场上不断生长的草吃尽呢?
要列方程
谢谢 展开
展开全部
这是典型的牛顿问题,也叫牛吃草问题。无法用方程解,或者说用方程只是在将算术方式强行转化成方程,无意义,所以别做无用功。还是算术方法简单。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:把一只羊一天所吃的牧草看作1,则:
草的生长速度:(21*12-25*8)/(12-8)=52/4=13 个单位
原有草量:25*8-13*8=96 个单位
养15只羊把草吃尽需要的天数:
96/(15-13)=48天 。
草的生长速度:(21*12-25*8)/(12-8)=52/4=13 个单位
原有草量:25*8-13*8=96 个单位
养15只羊把草吃尽需要的天数:
96/(15-13)=48天 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询