设正项级数An发散,讨论An/(1+n^2*An)级数敛散性和An/(1+An^2)级数敛散性
展开全部
第一题:由于An为正项级数,所以An/[1+(n^2)An]<An/[(n^2)An],即An/[1+(n^2)An]<1/(n^2),级数1/(n^2)收敛,所以An1[1+(n^2)An]也收敛.第二题:An1[1+(An)^2]发散例:当An=1/n时,An/[1+(An)^2]=n/(1+n^2)≥n/(n^2+n^2),即An/[1+(An)^2]≥1/(2n),级数1/(2n)发散,所以An/[1+(An)^2]也发散;收敛例:当An=n^2时,An/[1+(An)^2]=(n^2)/[1+(n^2)^2]<(n^2)/(n^2)^2,即An/[1+(An)^2]<1/(n^2),级数1/(n^2)收敛,所以An1[1+(An)^2]收敛;所以当正项级数An发散时,级数An/[1+(An)^2]可能收敛,也可能发散.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询