诱导公式

 我来答
流墨0000D
2023-03-18 · 超过71用户采纳过TA的回答
知道答主
回答量:132
采纳率:0%
帮助的人:65.8万
展开全部

高一诱导公式六个如下:

公式一:

sin(2kπ+α)=sinα(k∈Z)。
cos(2kπ+α)=cosα(k∈Z)。
tan(2kπ+α)=tanα(k∈Z)。

公式二:
sin(π+α)=-sinα。
cos(π+α)=-cosα。
tan(π+α)=tanα。

公式三:
sin(-α)=-sinα。
cos(-α)=cosα。
tan(-α)=-tanα。

公式四:
sin(π-α)=sinα。
cos(π-α)=-cosα。
tan(π-α)=-tanα。

公式五:
sin(2π-α)=-sinα。
cos(2π-α)=cosα。
tan(2π-α)=-tanα。

公式六:
sin(π/2+α)=cosα。
cos(π/2+α)=-sinα。
tan(π/2+α)=-cotα。

诱导公式记忆口诀规律为:
对于π/2*k±α(k∈Z)的三角函数值:
1、当k是偶数时,得到α的同名函数值,即函数名不改变。
2、当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα。
上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α。所在象限的原三角函数值的符号可记忆。

上海上恒
2024-02-18 广告
数字滤波器可以按所处理信号的维数分为一维、二维或多维数字滤波器。一维数字滤波器处理的信号为单变量函数序列,例如时间函数的抽样值。二维或多维数字滤波器处理的信号为两个或多个变量函数序列。例如,二维图像离散信号是平面坐标上的抽样值。一维滤波器,... 点击进入详情页
本回答由上海上恒提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式