求不定积分[x^2+1/(x+1)^2(x-1)]dx
1个回答
展开全部
这个不定积分的解法是:
将被积函数分解为部分分式的形式,即
对第一项,使用换元法,令u = x+1,得到
对第二项,使用分部积分法,令u = 1/(x+1),v’ = 1/(x-1),得到
分别对两项求不定积分,得到
将u替换回x+1,合并常数项,得到最终答案
[x2+1/(x+1)2(x-1)]dx = [x2/(x+1)2(x-1)]dx + [1/(x+1)^2(x-1)]dx
[x2/(x+1)2(x-1)]dx = [(u-1)2/(u2(u-2))]du
[1/(x+1)^2(x-1)]dx = [u/(x-1)]dx - [u’/(x-1)]dx
∫[(u-1)2/(u2(u-2))]du = (1/2)ln|u-2| - (1/2)ln|u| - (1/u) + C
∫[u/(x-1)]dx = (1/2)ln|x-1| + C
∫[u’/(x-1)]dx = (1/2)ln|x-1| - (1/x) + C
∫[x2+1/(x+1)2(x-1)]dx = (1/2)ln|x-1| - (1/2)ln|x+1| - (1/(x+1)) - (1/x) + C
希望这个答案对您有帮助。😊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询