f(x)可导,且 f(x)=x+x_0^1f(x)dx+x^2lim_(x0)(f(x))/x 求
1个回答
展开全部
根据题意,我们有:
f(x) = x + x0∫1f(x)dx + x^2limx0→0 (f(x)/x)
对f(x)求导,得到:
f'(x) = 1 + x0f(x) + x0f'(x) + x^2limx0→0 (f'(x)/x) - x0f(x)/x0
化简上式,得到:
f'(x) = 1 + xf(x0) + x0f'(x) + xlimx0→0 f'(x) - f(x)
将limx0→0 f'(x) = f'(0)代入上式,得到:
f'(x) = 1 + xf(x0) + x0f'(x) + x(f'(0) - f(x))
移项,得到:
f'(x) - x0f'(x) - xf(x0) = 1 + x(f'(0) - f(x))
将上式两边从x0到x积分,得到:
∫x0xf'(x)dx - x0^2f(x0) - x0x^2f(x0) + 1/2x^2 = ∫x0^x[1 + t(f'(0) - f(t))]dt
化简得到:
[x^2f(x) - x0^2f(x0)]/2 - x0x^2f(x0) + 1/2x^2 = x[f(x0) - f(0)] + x0f(x) - x0f(0)
移项得到:
f(x) = x + x0∫1f(x)dx + x^2limx0→0 (f(x)/x) - x0^2f(x0)/2 - x0x^2f(x0)/2 + 1/2x^2 - x[f(x0) - f(0)] - x0f(0) + x0f(x)
因此,函数f(x)的表达式为:
f(x) = x + x0∫1f(x)dx + x^2limx0→0 (f(x)/x) - x0^2f(x0)/2 - x0x^2f(x0)/2 + 1/2x^2 - x[f(x0) - f(0)] - x0f(0) + x0f(x)
f(x) = x + x0∫1f(x)dx + x^2limx0→0 (f(x)/x)
对f(x)求导,得到:
f'(x) = 1 + x0f(x) + x0f'(x) + x^2limx0→0 (f'(x)/x) - x0f(x)/x0
化简上式,得到:
f'(x) = 1 + xf(x0) + x0f'(x) + xlimx0→0 f'(x) - f(x)
将limx0→0 f'(x) = f'(0)代入上式,得到:
f'(x) = 1 + xf(x0) + x0f'(x) + x(f'(0) - f(x))
移项,得到:
f'(x) - x0f'(x) - xf(x0) = 1 + x(f'(0) - f(x))
将上式两边从x0到x积分,得到:
∫x0xf'(x)dx - x0^2f(x0) - x0x^2f(x0) + 1/2x^2 = ∫x0^x[1 + t(f'(0) - f(t))]dt
化简得到:
[x^2f(x) - x0^2f(x0)]/2 - x0x^2f(x0) + 1/2x^2 = x[f(x0) - f(0)] + x0f(x) - x0f(0)
移项得到:
f(x) = x + x0∫1f(x)dx + x^2limx0→0 (f(x)/x) - x0^2f(x0)/2 - x0x^2f(x0)/2 + 1/2x^2 - x[f(x0) - f(0)] - x0f(0) + x0f(x)
因此,函数f(x)的表达式为:
f(x) = x + x0∫1f(x)dx + x^2limx0→0 (f(x)/x) - x0^2f(x0)/2 - x0x^2f(x0)/2 + 1/2x^2 - x[f(x0) - f(0)] - x0f(0) + x0f(x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询