积分的微分怎么求?

 我来答
baochuankui888
高粉答主

2023-07-02 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:8912
展开全部

I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]

=∫∫e^(-x^2-y^2)dxdy

转化成极坐标

=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]

=2π*[(-1/2)e^(-p^2)|(0-+无穷)]

=2π*1/2

∫e^(-x^2)dx=I^(1/2)=√π

扩展资料:

性质

通常意义

积分都满足一些基本的性质。以下的

 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。

线性

积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

所有在  上可积的函数构成了一个线性空间。黎曼积分的意义上,所有区间[a,b]上黎曼可积的函数f和g都满足:

所有在可测集合  上勒贝格可积的函数f和g都满足:

在积分区域上,积分有可加性。黎曼积分意义上,如果一个函数f在某区间上黎曼可积,那么对于区间内的三个实数a, b, c,有

如果函数f在两个不相交的可测集  和  上勒贝格可积,那么

如果函数f勒贝格可积,那么对任意  ,都存在  ,使得  中任意的元素A,只要  

,就有

参考资料:百度百科——积分

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式