急!请 数学高手 出一道超难的 平面几何证明题!

我老师要求每个同学出道题来让大家互相练习,我想出道超难的来难倒大家。题目一定要有个圆题目中不要有割线定理,相交弦定理和切线割线定理。(我还没学)最好上传图片,还有答案,一... 我老师要求每个同学出道题来让大家互相练习,我想出道超难的来难倒大家。
题目一定要有个圆
题目中不要有割线定理,相交弦定理和切线割线定理。(我还没学)
最好上传图片,还有答案,
一定要越难越好,最好是看半天都不会做的那种!
谢谢大家
展开
 我来答
轩辕无鱼
2010-05-11 · TA获得超过1.1万个赞
知道大有可为答主
回答量:7003
采纳率:50%
帮助的人:6884万
展开全部
求证:圆内接三角形以正三角形面积最大
别看题目短……仔细研究一下就知道还是挺难的……对初中生……

图就不用我上了吧……
简单说下证明过程
1.先证明对任意三角形,总存在一个等腰三角形的面积不比他小(对某一底作中垂线,与圆交与一点,将此点与底边连线得到所要的等腰三角形。底不变,高变大……)
2.在证明对任意内接等腰三角形,面积小于正三角形(设底为x,半径r,把面积s写成x的函数,函数是2次的,求最值,可知当x=根号3*r时面积最大,即正三角形)
巧克力lloveyou
2010-05-11 · TA获得超过2546个赞
知道小有建树答主
回答量:401
采纳率:91%
帮助的人:142万
展开全部
证明:
连接MB、NA并延长MB、NA交于点E,连接EC并延长交MN于Q,过A作切线交CE于P
因为MN是直径
所以AM⊥EN,BN⊥ME,即AM、BN是△EMN的两条高
所以∠ACE+∠AEC=90°,即∠NEQ+∠ACP=90°
根据“三角形三条高交于一点”的性质知EQ也是△EMN的高,即EQ⊥MN
所以∠NEQ+∠ENM=90°
所以∠ACP=∠ENM
因为AP是切线
所以∠PAM=∠ENM,即∠PAC=∠ENM
所以∠ACP=∠PAC
所以PC=PA
因为∠PAE+∠PAC=90°,即∠PEA+∠PCA=90°
所以∠PAE=∠PEA
所以PA=PE
所以P是CE的中点
同样地,如果过B作圆的切线交CE于点H,可以证明H也是CE的中点
即过A、B所作圆的切线都经过CE的中点
所以点D就是CE的中点,即点D在EQ上
因为EQ⊥MN
所以CD⊥MN
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
d62666
2010-05-11 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2702
采纳率:100%
帮助的人:3633万
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
947999728
2010-05-11
知道答主
回答量:59
采纳率:0%
帮助的人:0
展开全部
a+b=4
z=4
z/b^2=5
求a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式