小学四年级趣味数学题

2题,要答案... 2题,要答案 展开
樱絶
2010-05-12 · TA获得超过298个赞
知道答主
回答量:51
采纳率:0%
帮助的人:0
展开全部
问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?

这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。

得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。

为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。

在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。

题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?

此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:

后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。

如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?

67×(2+1)-17×(5+1)

=201-102

=99(吨)

99÷〔(5+1)-(2+1)〕

=99÷3

=33(吨)答:原来的乙有33吨。

(33+67)×2+67

=200+67

=267(吨)答:原来的甲有267吨。

分析:

1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;

甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。

2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,

理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)

3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。

4、再求原来的甲即可。
无语——
正直是道德之本
2010-05-11 · TA获得超过5071个赞
知道答主
回答量:98
采纳率:100%
帮助的人:93.2万
展开全部
甲乙的路程是一样的,时间甲少5小时,设甲用t小时

可以得到

1. 12t=8(t+5)

t=10

所以距离=120千米

小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?

280*8-220*8=480

这时候如果小明是第一次追上的话就是这样多

这时候小明多跑一圈

25 15 5

5 25 45

6.5饿连续偶数的和是240,这5个偶数分别是多少?

1 70*53最大 30*75最小

2 64块

3 五角星形

4 4*3*2*1=24

5不能,因为都是奇数,奇数个奇数相加不可能得偶数

6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52

7.摩托车的速度是xkm/h,自行车速是ykm/h 。

21y+8x=12x+9y

4x=12y

x=3y

所以摩托车共需12+9/3=15小时

问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?

这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。

得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。

为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。

在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。

题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?

此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:

后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。

如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?

67×(2+1)-17×(5+1)

=201-102

=99(吨)

99÷〔(5+1)-(2+1)〕

=99÷3

=33(吨)答:原来的乙有33吨。

(33+67)×2+67

=200+67

=267(吨)答:原来的甲有267吨。

分析:

1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;

甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。

2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,

理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)

3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。

4、再求原来的甲即可。
geigehaoping
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
晶艳雕D
2010-05-11 · TA获得超过223个赞
知道答主
回答量:55
采纳率:0%
帮助的人:14.5万
展开全部
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离

甲乙的路程是一样的,时间甲少5小时,设甲用t小时

可以得到

1. 12t=8(t+5)

t=10

所以距离=120千米

小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?

280*8-220*8=480

这时候如果小明是第一次追上的话就是这样多

这时候小明多跑一圈...

1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.

2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?

3.6盆花要摆成4排,每排3盆,应该怎样摆?

4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?

5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35

25 15 5

5 25 45

6.5饿连续偶数的和是240,这5个偶数分别是多少?

7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?

1 70*53最大 30*75最小

2 64块

3 五角星形

4 4*3*2*1=24

5不能,因为都是奇数,奇数个奇数相加不可能得偶数

6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52

7.摩托车的速度是xkm/h,自行车速是ykm/h 。

21y+8x=12x+9y

4x=12y

x=3y

所以摩托车共需12+9/3=15小时

问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?

这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。

得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。

为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。

在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。

题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?

此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:

后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。

如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?

67×(2+1)-17×(5+1)

=201-102

=99(吨)

99÷〔(5+1)-(2+1)〕

=99÷3

=33(吨)答:原来的乙有33吨。

(33+67)×2+67

=200+67

=267(吨)答:原来的甲有267吨。

分析:

1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;

甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。

2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,

理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)

3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。

4、再求原来的甲即可。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
公民天下
2010-05-21
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
第一题. 3 ,7 ,47 ,2207 ,( )
A.4414 B 6621 C.8828 D.4870847
解析:本题可用前一个数的平方减2得出后一个数,这就是本题的规律。即7=3�2-2,47=7�2-2,2207�2-2=4870847,本题可直接选D,因为A、B、C只是四位数,可排除。而四位数的平方是7位数。
故本题的正确答案为D。

第二题. 4 ,11 ,30 ,67 ,( )
A.126 B.127 C.128 D.129
解析:这道题有点难,初看不知是何种规律,但仔细观之,可分析出来,4=1^3+3,11=2^3+3,30=3^3+3,67=4^3+3,这是一个自然数列的立方分别加3而得。依此规律,( )内之数应为5^3+3=128。
故本题的正确答案为C。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bd86399135
2010-05-11 · 超过12用户采纳过TA的回答
知道答主
回答量:85
采纳率:0%
帮助的人:43.3万
展开全部
问题是啥?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式