数学分析不等式证明

证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n)。其中∑是对k从0到n求和。似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3).... 证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n) 。
其中∑是对k从0到n求和。似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k 。我不得要领,望高手解答,不胜感激!
数学归纳法不妨试试,不过那个字母e有些烦人,e=2.718281828...归纳法倒是很难, 电灯剑客说的很正确,我后来这样做了,我先证明了:xln(1+1/x)>1+ln(1-1/(2x)),x≥1。记y=1/x,则0<y≤1,记f(y)=ln(1+y)-y+y^2/2,求导知f严格单增,f(y)>f(0)=0,故有ln(1+1/x)>1/x-1/(2x^2)>0,xln(1+1/x)>1-1/(2x)。又由ln(1-1/(2x))的幂级数展开知(显然x≥1时级数收敛到ln(1-1/(2x))):ln(1-1/(2x))<-1/(2x)-1/8x^2,故1+ln(1-1/(2x))<1-1/(2x)-1/8x^2<1-1/(2x)<xln(1+1/x),故(1+1/x)^x>e(1-1/(2x)),x≥1,从而:(1+1/n)^n>e(1-1/(2x))>(∑1/k!)-e/(2n) 。证必。证明中我没有用到中值定理...
展开
电灯剑客
科技发烧友

2010-05-13 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4954万
展开全部
提示一下,左边用Taylor中值定理来估计e^{1/n},右边直接放大到e(1-1/(2n))。
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
tppand1
2010-05-12
知道答主
回答量:23
采纳率:0%
帮助的人:3.8万
展开全部
用数学归纳法应该差不多
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式