数学分析不等式证明
证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n)。其中∑是对k从0到n求和。似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)....
证:对每个自然数n成立:(1+1/n)^n>(∑1/k!)-e/(2n) 。
其中∑是对k从0到n求和。似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k 。我不得要领,望高手解答,不胜感激!
数学归纳法不妨试试,不过那个字母e有些烦人,e=2.718281828...归纳法倒是很难, 电灯剑客说的很正确,我后来这样做了,我先证明了:xln(1+1/x)>1+ln(1-1/(2x)),x≥1。记y=1/x,则0<y≤1,记f(y)=ln(1+y)-y+y^2/2,求导知f严格单增,f(y)>f(0)=0,故有ln(1+1/x)>1/x-1/(2x^2)>0,xln(1+1/x)>1-1/(2x)。又由ln(1-1/(2x))的幂级数展开知(显然x≥1时级数收敛到ln(1-1/(2x))):ln(1-1/(2x))<-1/(2x)-1/8x^2,故1+ln(1-1/(2x))<1-1/(2x)-1/8x^2<1-1/(2x)<xln(1+1/x),故(1+1/x)^x>e(1-1/(2x)),x≥1,从而:(1+1/n)^n>e(1-1/(2x))>(∑1/k!)-e/(2n) 。证必。证明中我没有用到中值定理... 展开
其中∑是对k从0到n求和。似乎要将不等式左边展开,再用辅助不等式:(1-1/2)(1-1/3)...(1-1/k)>1-1/2-1/3-...-1/k 。我不得要领,望高手解答,不胜感激!
数学归纳法不妨试试,不过那个字母e有些烦人,e=2.718281828...归纳法倒是很难, 电灯剑客说的很正确,我后来这样做了,我先证明了:xln(1+1/x)>1+ln(1-1/(2x)),x≥1。记y=1/x,则0<y≤1,记f(y)=ln(1+y)-y+y^2/2,求导知f严格单增,f(y)>f(0)=0,故有ln(1+1/x)>1/x-1/(2x^2)>0,xln(1+1/x)>1-1/(2x)。又由ln(1-1/(2x))的幂级数展开知(显然x≥1时级数收敛到ln(1-1/(2x))):ln(1-1/(2x))<-1/(2x)-1/8x^2,故1+ln(1-1/(2x))<1-1/(2x)-1/8x^2<1-1/(2x)<xln(1+1/x),故(1+1/x)^x>e(1-1/(2x)),x≥1,从而:(1+1/n)^n>e(1-1/(2x))>(∑1/k!)-e/(2n) 。证必。证明中我没有用到中值定理... 展开
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询