已知数列{AN}的通项公式为AN=1/(2N-1)(2N+1),求它的前N项和。
1个回答
展开全部
an=1/2*2/(2n-1)(2n+1)
=1/2*[(2n+1)-(2n-1)]/(2n-1)(2n+1)
=1/2*[(2n+1)/(2n-1)(2n+1)-(2n-1)/(2n-1)(2n+1)]
=1/2*[1/(2n-1)-1/(2n+1)]
所以Sn=1/2*[1-1/3+1/3-1/5+1/5-1/7+……+1/(2n-1)-1/(2n+1)]
=1/2*[1-1/(2n+1)]
=n/(2n+1)
=1/2*[(2n+1)-(2n-1)]/(2n-1)(2n+1)
=1/2*[(2n+1)/(2n-1)(2n+1)-(2n-1)/(2n-1)(2n+1)]
=1/2*[1/(2n-1)-1/(2n+1)]
所以Sn=1/2*[1-1/3+1/3-1/5+1/5-1/7+……+1/(2n-1)-1/(2n+1)]
=1/2*[1-1/(2n+1)]
=n/(2n+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询