公务员数字推理技巧?
数字推理和数量关系好复杂一看到题就摸不着头脑不知道该怎么去整理规律谁有整理的技巧规律给我一份好不好?多给你点分!谢谢了!!!...
数字推理和数量关系好复杂
一看到题就摸不着头脑 不知道该怎么去整理规律
谁有整理的技巧 规律 给我一份好不好?
多给你点分!谢谢了!!! 展开
一看到题就摸不着头脑 不知道该怎么去整理规律
谁有整理的技巧 规律 给我一份好不好?
多给你点分!谢谢了!!! 展开
2个回答
展开全部
1.数字推理
数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
2.数学运算
数学运算题主要考查解决四则运算等基本数字问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。
数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。
二、解题技巧及规律总结
数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关系分为两大类:
一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:
1、 相邻两个数加、减、乘、除等于第三数
2、 相邻两个数加、减、乘、除后再加或者减一个常数等于第三数
3、 等差数列:数列中各个数字成等差数列
4、 二级等差:数列中相邻两个数相减后的差值成等差数列
5、 等比数列 :数列中相邻两个数的比值相等
6、 二级等比:数列中相邻两个数相减后的差值成等比数列
7、 前一个数的平方等于第二个数
8、 前一个数的平方再加或者减一个常数等于第二个数;
9、 前一个数乘一个倍数加减一个常数等于第二个数;
10、 隔项数列:数列相隔两项呈现一定规律,
11、 全奇 、全偶数列
12、 排序数列
二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、 数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成
2、 每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n
3、 数列中每一个数字都是n的倍数加减一个常数
以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?
这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答
第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案
数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。这样处理不但节省了时间,保证了容易题目的得分率,而且会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
2.数学运算
数学运算题主要考查解决四则运算等基本数字问题的能力。在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。
数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。
二、解题技巧及规律总结
数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关系分为两大类:
一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:
1、 相邻两个数加、减、乘、除等于第三数
2、 相邻两个数加、减、乘、除后再加或者减一个常数等于第三数
3、 等差数列:数列中各个数字成等差数列
4、 二级等差:数列中相邻两个数相减后的差值成等差数列
5、 等比数列 :数列中相邻两个数的比值相等
6、 二级等比:数列中相邻两个数相减后的差值成等比数列
7、 前一个数的平方等于第二个数
8、 前一个数的平方再加或者减一个常数等于第二个数;
9、 前一个数乘一个倍数加减一个常数等于第二个数;
10、 隔项数列:数列相隔两项呈现一定规律,
11、 全奇 、全偶数列
12、 排序数列
二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、 数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成
2、 每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n
3、 数列中每一个数字都是n的倍数加减一个常数
以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?
这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答
第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询