向量法求线面角等于正弦值还是余弦值

 我来答
兔老大米奇
高粉答主

2019-12-23 · 醉心答题,欢迎关注
知道小有建树答主
回答量:988
采纳率:100%
帮助的人:15.2万
展开全部

平面的法向量是n,平面的斜线为PA,则直线与平面的夹角a的正弦值为|n*PA|/(|n|*|PA|),

∴求余弦值时,再用√(1-sin²a)即可.

|n*PA|/(|n|*|PA|)是法向量与直线的夹角的余弦值,它是直线与平面的夹角的正弦值。因为两个角互余。

设向量a是直线a的一个方向向量,

向量b是直线b的一个方向向量,

直线a,b所成角的余弦值是通过公式:

cos=[向量a·向量b]/|向量a||向量b||

下一步再用sinθ=√1-cos^2(θ)公式求出sinθ。

扩展资料

其他方法:

空间中两条异面直线所成角。

AB=(X1,Y1,Z1),CD=(X2,Y2,Z2)。

AB*CD=(X1,Y1,Z1)*(X2,Y2,Z2)=|AB||CD|cosα。

cosα=(X1,Y1,Z1)*(X2,Y2,Z2)/|AB||CD|。

算出来应该是余弦值的。

二面角所成的平面角'先算二个法向量:N1、N2。

然后N1*N2=|N1||N2|cosα。

cosα=N1*N2/|N1||N2|。

算出来结果应该是余弦值的。

线面角'线的向量AB=(X1,Y1,Z1),平面的法向量:N=(X2,Y2,Z2)。

AB*N=|AB||N|cosα,cosα=AB*N/|AB||N|。

这个cosα值应该是AB与平面法向量夹角的余弦值,是线面角的正弦值。

(因为AB、N及平面构成直角三角形)。

李大为dawei
2010-05-18 · TA获得超过1345个赞
知道小有建树答主
回答量:505
采纳率:0%
帮助的人:308万
展开全部

如图,求得是平面的法向量与直线的方向向量所成的角,

公式 cos<a,n>=|a*n|/(|a||b|)

即图上角θ,而要求的角与其互余,

sin线面角=sin(90°-<a,n>)=cos<a,n>=|a*n|/(|a||b|)

即求得是余弦值,转化成正弦值

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
文曲a
2023-07-26 · TA获得超过6017个赞
知道大有可为答主
回答量:6154
采纳率:100%
帮助的人:405万
展开全部
线面角是指一条直线与一个平面之间的角度。在向量法中,可以使用向量的点乘或叉乘来计算线面角。
具体来说,设平面的法向量为 n,直线的方向向量为 l。则线面角 θ 可以通过以下公式计算:
1. 点乘公式(使用内积):
cos(θ) = (n·l) / (|n| |l|)
其中,n·l 表示 n 与 l 的点乘,|n| 和 |l| 分别表示 n 和 l 的模长。
2. 叉乘公式(使用外积):
sin(θ) = |n×l| / (|n| |l|)
其中,n×l 表示 n 与 l 的叉乘,|n×l| 表示 n×l 的模长。
根据以上公式可以得知,线面角的计算使用正弦值,而不是余弦值。因此,在向量法中,线面角的计算是基于正弦值进行的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
aa475848578
2023-07-15 · 超过10用户采纳过TA的回答
知道答主
回答量:167
采纳率:66%
帮助的人:9.5万
展开全部
线面角是指一条直线与一个平面之间的夹角。在向量法中,线面角可以通过向量的点乘(内积)求解。
设直线的方向向量为a,平面的法向量为n,则线面角θ的余弦值可以通过以下公式计算:
cos(θ) = (a·n) / (|a| |n|)
其中,a·n表示向量a与向量n的点乘(内积),|a|和|n|分别表示向量a和向量n的模(长度)。
因此,线面角的余弦值可以通过向量的点乘计算得出。这意味着向量法求线面角的结果是余弦值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式