求不定积分~谢谢了!!
1个回答
展开全部
设 x = tant,则 t = arctanx,dx = (sect)^2*dt
∫(x*arctanx)*dx/(1+x^2)^2
=∫tant*t*(sect)^2*dt/(sect)^4
=∫t*tant*dt/(sect)^2
=∫t*tant*(cost)^2*dt
=∫t*sint * cost *dt
=1/2*∫t*sin(2t)*dt
=1/2*[t*(-1/2*cos2t) + 1/2*∫cos2t*dt]
=-1/4*t*cos2t + 1/8*sin2t + C
=-1/4*arctanx *[2(cost)^2 -1] + 1/4 * sint *cost + C
=-1/4*arctanx *[2/(1+x^2) - 1] + 1/4 * tant * (cost)^2 + C
=-1/4*arctanx * (1-x^2)/(1+x^2) + 1/4*x * 1/(1+x^2) + C
=-1/4*arctanx * (1-x^2)/(1+x^2) + 1/4* x/(1+x^2) + C
∫(x*arctanx)*dx/(1+x^2)^2
=∫tant*t*(sect)^2*dt/(sect)^4
=∫t*tant*dt/(sect)^2
=∫t*tant*(cost)^2*dt
=∫t*sint * cost *dt
=1/2*∫t*sin(2t)*dt
=1/2*[t*(-1/2*cos2t) + 1/2*∫cos2t*dt]
=-1/4*t*cos2t + 1/8*sin2t + C
=-1/4*arctanx *[2(cost)^2 -1] + 1/4 * sint *cost + C
=-1/4*arctanx *[2/(1+x^2) - 1] + 1/4 * tant * (cost)^2 + C
=-1/4*arctanx * (1-x^2)/(1+x^2) + 1/4*x * 1/(1+x^2) + C
=-1/4*arctanx * (1-x^2)/(1+x^2) + 1/4* x/(1+x^2) + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |