已知如图,在四边形ABCD中,AD平行于BC,BD垂直于AD,点E,F分别是AB,CD的中点,DE=BF.求证角A=角C

已知如图,在四边形ABCD中,AD平行于BC,BD垂直于AD,点E,F分别是AB,CD的中点,DE=BF.求证角A=角C... 已知如图,在四边形ABCD中,AD平行于BC,BD垂直于AD,点E,F分别是AB,CD的中点,DE=BF.求证角A=角C 展开
李俯御林君
2013-12-31
知道答主
回答量:6
采纳率:0%
帮助的人:6.6万
展开全部
解:设BD与EF相交于点M
∵AD∥BC,AD⊥BD,E、F为AB、CD中点
∴EF⊥BD于点M,且DM=BM,EF∥AD∥BC
又①DE=BF可得△DEM≌△BFM(HR定理)
∴∠DEF=∠BFE
又∠ADE=∠DEF,∠CBF=∠BFE,∠AEF=∠CFE(内错角相等定理)
有②∠ADE=∠CBF,∠AEF-∠DEF=∠CFE-∠BFE,即③∠AED=∠CFB
由①②③可得△ADE≌△CBF(角边角定理)
∴∠A=∠C得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式